Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226302695> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4226302695 abstract "<div>Measurement of human body movement is an essential step in biomechanical analysis. The current standard for human motion capture systems uses infrared cameras to track reflective markers placed on the subject. While these systems can accurately track joint kinematics, the analyses are spatially limited to the lab environment. Though Inertial Measurement Unit (IMU) can eliminate the spatial limitations of the motion capture system, those systems are impractical for use in daily living due to the need for many sensors, typically one per body segment. Due to the need for practical and accurate estimation of joint kinematics, this study implements a reduced number of IMU sensors and employs machine learning algorithm to map sensor data to joint angles. Our developed algorithm estimates hip, knee, and ankle angles in the sagittal plane using two shoe-mounted IMU sensors in different practical walking conditions: treadmill, level overground, stair, and slope conditions. Specifically, we proposed five deep learning networks that use combinations of Convolutional Neural Networks (CNN) and Gated Recurrent Unit (GRU) based Recurrent Neural Networks (RNN) as base learners for our framework. Using those five baseline models, we proposed a novel framework, DeepBBWAE-Net, that implements ensemble techniques such as bagging, boosting, and weighted averaging to improve kinematic predictions. DeepBBWAE-Net predicts joint kinematics for the three joint angles under all the walking conditions with a Root Mean Square Error (RMSE) 6.93-29.0% lower than base models individually. This is the first study that uses a reduced number of IMU sensors to estimate kinematics in multiple walking environments.</div>" @default.
- W4226302695 created "2022-05-05" @default.
- W4226302695 creator A5019214287 @default.
- W4226302695 creator A5067621571 @default.
- W4226302695 creator A5081991985 @default.
- W4226302695 creator A5091393843 @default.
- W4226302695 date "2022-04-11" @default.
- W4226302695 modified "2023-10-14" @default.
- W4226302695 title "DeepBBWAE-Net: A CNN-RNN Based Deep SuperLearner For Estimating Lower Extremity Sagittal Plane Joint Kinematics Using Shoe-Mounted IMU Sensors In Daily Living" @default.
- W4226302695 doi "https://doi.org/10.36227/techrxiv.15040653.v2" @default.
- W4226302695 hasPublicationYear "2022" @default.
- W4226302695 type Work @default.
- W4226302695 citedByCount "1" @default.
- W4226302695 countsByYear W42263026952023 @default.
- W4226302695 crossrefType "posted-content" @default.
- W4226302695 hasAuthorship W4226302695A5019214287 @default.
- W4226302695 hasAuthorship W4226302695A5067621571 @default.
- W4226302695 hasAuthorship W4226302695A5081991985 @default.
- W4226302695 hasAuthorship W4226302695A5091393843 @default.
- W4226302695 hasBestOaLocation W42263026951 @default.
- W4226302695 hasConcept C104114177 @default.
- W4226302695 hasConcept C105795698 @default.
- W4226302695 hasConcept C121332964 @default.
- W4226302695 hasConcept C126838900 @default.
- W4226302695 hasConcept C127413603 @default.
- W4226302695 hasConcept C139945424 @default.
- W4226302695 hasConcept C151800584 @default.
- W4226302695 hasConcept C154945302 @default.
- W4226302695 hasConcept C170154142 @default.
- W4226302695 hasConcept C178910020 @default.
- W4226302695 hasConcept C18555067 @default.
- W4226302695 hasConcept C31972630 @default.
- W4226302695 hasConcept C33923547 @default.
- W4226302695 hasConcept C39920418 @default.
- W4226302695 hasConcept C41008148 @default.
- W4226302695 hasConcept C44154836 @default.
- W4226302695 hasConcept C48007421 @default.
- W4226302695 hasConcept C71924100 @default.
- W4226302695 hasConcept C74650414 @default.
- W4226302695 hasConcept C79061980 @default.
- W4226302695 hasConcept C81363708 @default.
- W4226302695 hasConcept C99508421 @default.
- W4226302695 hasConceptScore W4226302695C104114177 @default.
- W4226302695 hasConceptScore W4226302695C105795698 @default.
- W4226302695 hasConceptScore W4226302695C121332964 @default.
- W4226302695 hasConceptScore W4226302695C126838900 @default.
- W4226302695 hasConceptScore W4226302695C127413603 @default.
- W4226302695 hasConceptScore W4226302695C139945424 @default.
- W4226302695 hasConceptScore W4226302695C151800584 @default.
- W4226302695 hasConceptScore W4226302695C154945302 @default.
- W4226302695 hasConceptScore W4226302695C170154142 @default.
- W4226302695 hasConceptScore W4226302695C178910020 @default.
- W4226302695 hasConceptScore W4226302695C18555067 @default.
- W4226302695 hasConceptScore W4226302695C31972630 @default.
- W4226302695 hasConceptScore W4226302695C33923547 @default.
- W4226302695 hasConceptScore W4226302695C39920418 @default.
- W4226302695 hasConceptScore W4226302695C41008148 @default.
- W4226302695 hasConceptScore W4226302695C44154836 @default.
- W4226302695 hasConceptScore W4226302695C48007421 @default.
- W4226302695 hasConceptScore W4226302695C71924100 @default.
- W4226302695 hasConceptScore W4226302695C74650414 @default.
- W4226302695 hasConceptScore W4226302695C79061980 @default.
- W4226302695 hasConceptScore W4226302695C81363708 @default.
- W4226302695 hasConceptScore W4226302695C99508421 @default.
- W4226302695 hasLocation W42263026951 @default.
- W4226302695 hasLocation W42263026952 @default.
- W4226302695 hasOpenAccess W4226302695 @default.
- W4226302695 hasPrimaryLocation W42263026951 @default.
- W4226302695 hasRelatedWork W2289816430 @default.
- W4226302695 hasRelatedWork W2333544554 @default.
- W4226302695 hasRelatedWork W2536278167 @default.
- W4226302695 hasRelatedWork W2609545543 @default.
- W4226302695 hasRelatedWork W2746351147 @default.
- W4226302695 hasRelatedWork W2887024468 @default.
- W4226302695 hasRelatedWork W3009247559 @default.
- W4226302695 hasRelatedWork W3089173771 @default.
- W4226302695 hasRelatedWork W4376646401 @default.
- W4226302695 hasRelatedWork W4386436071 @default.
- W4226302695 isParatext "false" @default.
- W4226302695 isRetracted "false" @default.
- W4226302695 workType "article" @default.