Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226306543> ?p ?o ?g. }
- W4226306543 endingPage "13" @default.
- W4226306543 startingPage "1" @default.
- W4226306543 abstract "All over the world, time series-based anomaly prediction plays a vital role in all walks of life such as medical monitoring in hospitals and climate and environment risks. In the present study, a survey on the methods and techniques for time series data mining and proposes is carried, in order to solve a brand-new problem, time series progressive anomaly prediction. In terms of contents, the first part sketches out the methods that have captured most of the interest of researchers, which include an overview of abnormal prediction problems, a summary of main characteristics of anomaly prediction, and an introduction of anomaly prediction methodology in literature. The second part focuses on the future research trends on the phase/staged abnormal prediction of time series, where a novel time series compression method and a corresponding similarity measure will be designed, which can be explored subsequently. Finally, the related challenges to take this trend are mentioned. It is hoped that this paper can provide a profound understanding of anomaly prediction for the time series-based data mining research field." @default.
- W4226306543 created "2022-05-05" @default.
- W4226306543 creator A5049750015 @default.
- W4226306543 creator A5057424890 @default.
- W4226306543 creator A5069708679 @default.
- W4226306543 date "2022-04-05" @default.
- W4226306543 modified "2023-10-16" @default.
- W4226306543 title "Time Series Based Data Explorer and Stream Analysis for Anomaly Prediction" @default.
- W4226306543 cites W120250592 @default.
- W4226306543 cites W1492469144 @default.
- W4226306543 cites W1815439647 @default.
- W4226306543 cites W1965994821 @default.
- W4226306543 cites W1976152192 @default.
- W4226306543 cites W1981934656 @default.
- W4226306543 cites W1982802076 @default.
- W4226306543 cites W2002608093 @default.
- W4226306543 cites W2013543951 @default.
- W4226306543 cites W2035104901 @default.
- W4226306543 cites W2036499357 @default.
- W4226306543 cites W2038370668 @default.
- W4226306543 cites W2038788479 @default.
- W4226306543 cites W2040276865 @default.
- W4226306543 cites W2062404413 @default.
- W4226306543 cites W2062919563 @default.
- W4226306543 cites W2099302229 @default.
- W4226306543 cites W2103689503 @default.
- W4226306543 cites W2106570511 @default.
- W4226306543 cites W2110134662 @default.
- W4226306543 cites W2128160875 @default.
- W4226306543 cites W2162800060 @default.
- W4226306543 cites W2164000012 @default.
- W4226306543 cites W2241293425 @default.
- W4226306543 cites W2246138965 @default.
- W4226306543 cites W2402972623 @default.
- W4226306543 cites W2403962807 @default.
- W4226306543 cites W2479753099 @default.
- W4226306543 cites W2520753739 @default.
- W4226306543 cites W2963568316 @default.
- W4226306543 cites W3012087721 @default.
- W4226306543 cites W3022024545 @default.
- W4226306543 cites W3022046425 @default.
- W4226306543 cites W3023290301 @default.
- W4226306543 cites W3023696618 @default.
- W4226306543 cites W3043904603 @default.
- W4226306543 cites W3048036752 @default.
- W4226306543 cites W3083864010 @default.
- W4226306543 cites W3097230204 @default.
- W4226306543 cites W3111670203 @default.
- W4226306543 cites W3120030679 @default.
- W4226306543 cites W3145713205 @default.
- W4226306543 cites W3165807554 @default.
- W4226306543 cites W3186020689 @default.
- W4226306543 doi "https://doi.org/10.1155/2022/5885904" @default.
- W4226306543 hasPublicationYear "2022" @default.
- W4226306543 type Work @default.
- W4226306543 citedByCount "1" @default.
- W4226306543 countsByYear W42263065432022 @default.
- W4226306543 crossrefType "journal-article" @default.
- W4226306543 hasAuthorship W4226306543A5049750015 @default.
- W4226306543 hasAuthorship W4226306543A5057424890 @default.
- W4226306543 hasAuthorship W4226306543A5069708679 @default.
- W4226306543 hasBestOaLocation W42263065431 @default.
- W4226306543 hasConcept C103278499 @default.
- W4226306543 hasConcept C115961682 @default.
- W4226306543 hasConcept C119857082 @default.
- W4226306543 hasConcept C121332964 @default.
- W4226306543 hasConcept C124101348 @default.
- W4226306543 hasConcept C127313418 @default.
- W4226306543 hasConcept C12997251 @default.
- W4226306543 hasConcept C143724316 @default.
- W4226306543 hasConcept C151406439 @default.
- W4226306543 hasConcept C151730666 @default.
- W4226306543 hasConcept C154945302 @default.
- W4226306543 hasConcept C202444582 @default.
- W4226306543 hasConcept C2522767166 @default.
- W4226306543 hasConcept C26873012 @default.
- W4226306543 hasConcept C2780009758 @default.
- W4226306543 hasConcept C33923547 @default.
- W4226306543 hasConcept C41008148 @default.
- W4226306543 hasConcept C739882 @default.
- W4226306543 hasConcept C9652623 @default.
- W4226306543 hasConceptScore W4226306543C103278499 @default.
- W4226306543 hasConceptScore W4226306543C115961682 @default.
- W4226306543 hasConceptScore W4226306543C119857082 @default.
- W4226306543 hasConceptScore W4226306543C121332964 @default.
- W4226306543 hasConceptScore W4226306543C124101348 @default.
- W4226306543 hasConceptScore W4226306543C127313418 @default.
- W4226306543 hasConceptScore W4226306543C12997251 @default.
- W4226306543 hasConceptScore W4226306543C143724316 @default.
- W4226306543 hasConceptScore W4226306543C151406439 @default.
- W4226306543 hasConceptScore W4226306543C151730666 @default.
- W4226306543 hasConceptScore W4226306543C154945302 @default.
- W4226306543 hasConceptScore W4226306543C202444582 @default.
- W4226306543 hasConceptScore W4226306543C2522767166 @default.
- W4226306543 hasConceptScore W4226306543C26873012 @default.
- W4226306543 hasConceptScore W4226306543C2780009758 @default.
- W4226306543 hasConceptScore W4226306543C33923547 @default.
- W4226306543 hasConceptScore W4226306543C41008148 @default.