Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226307991> ?p ?o ?g. }
- W4226307991 endingPage "19386" @default.
- W4226307991 startingPage "19374" @default.
- W4226307991 abstract "Effective driver distraction detection (DDD) can significantly improve driving safety. Inspired by the definition of driver distraction, this work aims to detect driver distraction based on the true driver’s focus of attention (TDFoA). This is accomplished based on two stages, the prediction of TDFoA and DDD based on the driver’s focus of attention (DFoA) and the TDFoA. However, this process is challenging due to the complex and dynamic traffic environment, momentary glimpses not related to the TDFoA in normal driving, the interference of noise (information unrelated to the TDFoA), the ignoring of multi-scale information from driving scenarios, and the variability of thresholds used to distinguish between driver distraction and non-distraction. To solve these problems, we design a deep 3D residual network with attention mechanism and encoder-decoder (D3DRN-AMED) based on successive frames with convolution LSTM for the prediction of TDFoA, where successive frames are used to eliminate the impact of momentary glimpses. The convolution LSTM achieves the transition of features in successive frames, considering the historical variation of driving scenarios. Attention mechanism based on soft thresholding is inserted into the D3DRN-AMED as nonlinear transformation layers to eliminate the noise-related features, and the encoder-decoder module is introduced to extract multi-scale features. A method based on a neural network is then proposed to detect driver distraction according to the difference or similarity between DFoA and TDFoA, which can accurately detect driver distraction without determining the threshold. Experimental results show that the proposed method can effectively detect driver distraction." @default.
- W4226307991 created "2022-05-05" @default.
- W4226307991 creator A5047611545 @default.
- W4226307991 creator A5082687896 @default.
- W4226307991 date "2022-10-01" @default.
- W4226307991 modified "2023-10-12" @default.
- W4226307991 title "Driver Distraction Detection Based on the True Driver’s Focus of Attention" @default.
- W4226307991 cites W1789187189 @default.
- W4226307991 cites W2000840273 @default.
- W4226307991 cites W2088185241 @default.
- W4226307991 cites W2123466944 @default.
- W4226307991 cites W2146842127 @default.
- W4226307991 cites W2164084182 @default.
- W4226307991 cites W2308230922 @default.
- W4226307991 cites W2466381818 @default.
- W4226307991 cites W2474210745 @default.
- W4226307991 cites W2766726992 @default.
- W4226307991 cites W2769707901 @default.
- W4226307991 cites W2793668851 @default.
- W4226307991 cites W2887143516 @default.
- W4226307991 cites W2913181250 @default.
- W4226307991 cites W2917222509 @default.
- W4226307991 cites W2931905656 @default.
- W4226307991 cites W2934625602 @default.
- W4226307991 cites W2947918549 @default.
- W4226307991 cites W2955060956 @default.
- W4226307991 cites W2963136578 @default.
- W4226307991 cites W2963513865 @default.
- W4226307991 cites W2990711573 @default.
- W4226307991 cites W2996542533 @default.
- W4226307991 cites W3025800305 @default.
- W4226307991 cites W3124956299 @default.
- W4226307991 cites W3162018790 @default.
- W4226307991 cites W4200588667 @default.
- W4226307991 doi "https://doi.org/10.1109/tits.2022.3166208" @default.
- W4226307991 hasPublicationYear "2022" @default.
- W4226307991 type Work @default.
- W4226307991 citedByCount "8" @default.
- W4226307991 countsByYear W42263079912022 @default.
- W4226307991 countsByYear W42263079912023 @default.
- W4226307991 crossrefType "journal-article" @default.
- W4226307991 hasAuthorship W4226307991A5047611545 @default.
- W4226307991 hasAuthorship W4226307991A5082687896 @default.
- W4226307991 hasConcept C111919701 @default.
- W4226307991 hasConcept C115961682 @default.
- W4226307991 hasConcept C118505674 @default.
- W4226307991 hasConcept C120665830 @default.
- W4226307991 hasConcept C121332964 @default.
- W4226307991 hasConcept C154945302 @default.
- W4226307991 hasConcept C15744967 @default.
- W4226307991 hasConcept C169760540 @default.
- W4226307991 hasConcept C191178318 @default.
- W4226307991 hasConcept C192209626 @default.
- W4226307991 hasConcept C2776378700 @default.
- W4226307991 hasConcept C31972630 @default.
- W4226307991 hasConcept C41008148 @default.
- W4226307991 hasConcept C44154836 @default.
- W4226307991 hasConcept C45347329 @default.
- W4226307991 hasConcept C50644808 @default.
- W4226307991 hasConcept C98045186 @default.
- W4226307991 hasConcept C99498987 @default.
- W4226307991 hasConceptScore W4226307991C111919701 @default.
- W4226307991 hasConceptScore W4226307991C115961682 @default.
- W4226307991 hasConceptScore W4226307991C118505674 @default.
- W4226307991 hasConceptScore W4226307991C120665830 @default.
- W4226307991 hasConceptScore W4226307991C121332964 @default.
- W4226307991 hasConceptScore W4226307991C154945302 @default.
- W4226307991 hasConceptScore W4226307991C15744967 @default.
- W4226307991 hasConceptScore W4226307991C169760540 @default.
- W4226307991 hasConceptScore W4226307991C191178318 @default.
- W4226307991 hasConceptScore W4226307991C192209626 @default.
- W4226307991 hasConceptScore W4226307991C2776378700 @default.
- W4226307991 hasConceptScore W4226307991C31972630 @default.
- W4226307991 hasConceptScore W4226307991C41008148 @default.
- W4226307991 hasConceptScore W4226307991C44154836 @default.
- W4226307991 hasConceptScore W4226307991C45347329 @default.
- W4226307991 hasConceptScore W4226307991C50644808 @default.
- W4226307991 hasConceptScore W4226307991C98045186 @default.
- W4226307991 hasConceptScore W4226307991C99498987 @default.
- W4226307991 hasFunder F4320335777 @default.
- W4226307991 hasFunder F4320338204 @default.
- W4226307991 hasIssue "10" @default.
- W4226307991 hasLocation W42263079911 @default.
- W4226307991 hasOpenAccess W4226307991 @default.
- W4226307991 hasPrimaryLocation W42263079911 @default.
- W4226307991 hasRelatedWork W1515155642 @default.
- W4226307991 hasRelatedWork W1984342691 @default.
- W4226307991 hasRelatedWork W2028203774 @default.
- W4226307991 hasRelatedWork W2080126316 @default.
- W4226307991 hasRelatedWork W2375094152 @default.
- W4226307991 hasRelatedWork W2906771794 @default.
- W4226307991 hasRelatedWork W4205873045 @default.
- W4226307991 hasRelatedWork W4323276068 @default.
- W4226307991 hasRelatedWork W4382317979 @default.
- W4226307991 hasRelatedWork W641612223 @default.
- W4226307991 hasVolume "23" @default.
- W4226307991 isParatext "false" @default.
- W4226307991 isRetracted "false" @default.