Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226309000> ?p ?o ?g. }
- W4226309000 endingPage "10" @default.
- W4226309000 startingPage "1" @default.
- W4226309000 abstract "Deep transfer learning provides a feasible fault diagnosis method for intelligent mechanical systems. However, this method usually assumes that the source domain and the target domain have the same label space, which greatly limits its application in the actual industry. Therefore, this article proposes a multidiscriminator deep weighted adversarial network (MDWAN) method, which is especially suitable for partial transfer learning where the number of target domain categories is less than the source domain. The proposed method is mainly composed of three parts: feature extractor, multidiscriminator, and classifier. In the feature extraction section, a deep separable convolutional neural network model (DSC) is proposed, which can greatly reduce parameter calculation amount under the premise of ensuring the extraction accuracy. In the multidiscriminator section, a multidiscriminator weighted learning strategy is proposed. This strategy comprehensively considers the domain information and source domain label information, and introduces a weight function to quantify the contribution of source domain samples to the domain discriminator and classifier, which can effectively identify and filter outlier source samples to promote the positive transfer of shared samples. In order to verify the effectiveness and feasibility of the proposed method, the method is applied to three types of bearing datasets of different machines. Comparing the classification results of different methods, the conclusion shows that this method is more beneficial for bearing fault classification." @default.
- W4226309000 created "2022-05-05" @default.
- W4226309000 creator A5026429037 @default.
- W4226309000 creator A5046028916 @default.
- W4226309000 creator A5082648244 @default.
- W4226309000 creator A5085236573 @default.
- W4226309000 date "2022-01-01" @default.
- W4226309000 modified "2023-10-18" @default.
- W4226309000 title "Partial Transfer Learning of Multidiscriminator Deep Weighted Adversarial Network in Cross-Machine Fault Diagnosis" @default.
- W4226309000 cites W2004592267 @default.
- W4226309000 cites W2125283600 @default.
- W4226309000 cites W2531409750 @default.
- W4226309000 cites W2594244167 @default.
- W4226309000 cites W2763583057 @default.
- W4226309000 cites W2791694051 @default.
- W4226309000 cites W2887782657 @default.
- W4226309000 cites W2899279252 @default.
- W4226309000 cites W2929444508 @default.
- W4226309000 cites W2960933872 @default.
- W4226309000 cites W2968421710 @default.
- W4226309000 cites W2983948788 @default.
- W4226309000 cites W2995758361 @default.
- W4226309000 cites W2998506103 @default.
- W4226309000 cites W3006342871 @default.
- W4226309000 cites W3025888249 @default.
- W4226309000 cites W3025981493 @default.
- W4226309000 cites W3036403470 @default.
- W4226309000 cites W3095042947 @default.
- W4226309000 cites W3096831136 @default.
- W4226309000 cites W3123146821 @default.
- W4226309000 cites W3128151922 @default.
- W4226309000 cites W3200337201 @default.
- W4226309000 cites W3201049385 @default.
- W4226309000 cites W3202494336 @default.
- W4226309000 cites W3205510884 @default.
- W4226309000 cites W4200192600 @default.
- W4226309000 doi "https://doi.org/10.1109/tim.2022.3166786" @default.
- W4226309000 hasPublicationYear "2022" @default.
- W4226309000 type Work @default.
- W4226309000 citedByCount "16" @default.
- W4226309000 countsByYear W42263090002022 @default.
- W4226309000 countsByYear W42263090002023 @default.
- W4226309000 crossrefType "journal-article" @default.
- W4226309000 hasAuthorship W4226309000A5026429037 @default.
- W4226309000 hasAuthorship W4226309000A5046028916 @default.
- W4226309000 hasAuthorship W4226309000A5082648244 @default.
- W4226309000 hasAuthorship W4226309000A5085236573 @default.
- W4226309000 hasConcept C108583219 @default.
- W4226309000 hasConcept C119599485 @default.
- W4226309000 hasConcept C119857082 @default.
- W4226309000 hasConcept C124101348 @default.
- W4226309000 hasConcept C127413603 @default.
- W4226309000 hasConcept C134306372 @default.
- W4226309000 hasConcept C150899416 @default.
- W4226309000 hasConcept C153180895 @default.
- W4226309000 hasConcept C154945302 @default.
- W4226309000 hasConcept C2779803651 @default.
- W4226309000 hasConcept C33923547 @default.
- W4226309000 hasConcept C36503486 @default.
- W4226309000 hasConcept C41008148 @default.
- W4226309000 hasConcept C52622490 @default.
- W4226309000 hasConcept C76155785 @default.
- W4226309000 hasConcept C81299745 @default.
- W4226309000 hasConcept C81363708 @default.
- W4226309000 hasConcept C94915269 @default.
- W4226309000 hasConcept C95623464 @default.
- W4226309000 hasConceptScore W4226309000C108583219 @default.
- W4226309000 hasConceptScore W4226309000C119599485 @default.
- W4226309000 hasConceptScore W4226309000C119857082 @default.
- W4226309000 hasConceptScore W4226309000C124101348 @default.
- W4226309000 hasConceptScore W4226309000C127413603 @default.
- W4226309000 hasConceptScore W4226309000C134306372 @default.
- W4226309000 hasConceptScore W4226309000C150899416 @default.
- W4226309000 hasConceptScore W4226309000C153180895 @default.
- W4226309000 hasConceptScore W4226309000C154945302 @default.
- W4226309000 hasConceptScore W4226309000C2779803651 @default.
- W4226309000 hasConceptScore W4226309000C33923547 @default.
- W4226309000 hasConceptScore W4226309000C36503486 @default.
- W4226309000 hasConceptScore W4226309000C41008148 @default.
- W4226309000 hasConceptScore W4226309000C52622490 @default.
- W4226309000 hasConceptScore W4226309000C76155785 @default.
- W4226309000 hasConceptScore W4226309000C81299745 @default.
- W4226309000 hasConceptScore W4226309000C81363708 @default.
- W4226309000 hasConceptScore W4226309000C94915269 @default.
- W4226309000 hasConceptScore W4226309000C95623464 @default.
- W4226309000 hasFunder F4320321001 @default.
- W4226309000 hasFunder F4320329243 @default.
- W4226309000 hasLocation W42263090001 @default.
- W4226309000 hasOpenAccess W4226309000 @default.
- W4226309000 hasPrimaryLocation W42263090001 @default.
- W4226309000 hasRelatedWork W2279398222 @default.
- W4226309000 hasRelatedWork W3018421652 @default.
- W4226309000 hasRelatedWork W3021430260 @default.
- W4226309000 hasRelatedWork W3091976719 @default.
- W4226309000 hasRelatedWork W3192840557 @default.
- W4226309000 hasRelatedWork W4220996320 @default.
- W4226309000 hasRelatedWork W4285149559 @default.
- W4226309000 hasRelatedWork W4299822940 @default.