Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226309504> ?p ?o ?g. }
- W4226309504 endingPage "2424" @default.
- W4226309504 startingPage "2410" @default.
- W4226309504 abstract "Mapping impervious surface area (ISA) in an accurate and timely manner is essential for a variety of fields and applications, such as urban heat islands, hydrology, waterlogging, and urban planning and management. However, the large and complex urban landscapes pose great challenges in retrieving ISA information. Spaceborne hyperspectral (HS) remote sensing imagery provides rich spectral information with short revisit cycles, making it an ideal data source for ISA extraction from complex urban scenes. Nevertheless, insufficient single-band energy, the involvement of modulation transfer function (MTF), and the low signal-to-noise ratio (SNR) of spaceborne HS imagery usually result in poor image clarity and noises, leading to inaccurate ISA extraction. To address this challenge, we propose a new deep feature fusion-based classification method to improve 10 m resolution ISA mapping by integrating Zhuhai-1 HS imagery with Sentinel-2 multispectral (MS) imagery. We extract deep features that include spectral and spatial features, respectively, from MS and HS imagery via a 2-D convolutional neural network (CNN), aiming to increase feature diversity and improve the model’s recognition capability. The Sentinel-2 imagery is used to enhance the spatial information of the Zhuhai-1 HS image, improving the urban ISA retrieval by reducing the impact of noises. By combining the deep spatial features and deep spectral features, we obtain joint spatial-spectral features, leading to high classification accuracy and robustness. We test the proposed method in two highly urbanized study areas that cover Foshan city and Wuhan city, China. The results reveal that the proposed method obtains an overall accuracy of 96.72% and 96.75% in the two study areas, 18.78% and 8.66% higher than classification results with only HS imagery as input. The final ISA extraction overall accuracy is 95.42% and 95.50% in the two study areas, the highest among the comparison methods." @default.
- W4226309504 created "2022-05-05" @default.
- W4226309504 creator A5008593937 @default.
- W4226309504 creator A5026947952 @default.
- W4226309504 creator A5028302981 @default.
- W4226309504 creator A5053152039 @default.
- W4226309504 creator A5064435849 @default.
- W4226309504 creator A5070629154 @default.
- W4226309504 date "2022-01-01" @default.
- W4226309504 modified "2023-10-07" @default.
- W4226309504 title "Integrating Zhuhai-1 Hyperspectral Imagery With Sentinel-2 Multispectral Imagery to Improve High-Resolution Impervious Surface Area Mapping" @default.
- W4226309504 cites W1677182931 @default.
- W4226309504 cites W1983322114 @default.
- W4226309504 cites W1984792953 @default.
- W4226309504 cites W1997565609 @default.
- W4226309504 cites W2009235968 @default.
- W4226309504 cites W2036610344 @default.
- W4226309504 cites W2040617212 @default.
- W4226309504 cites W2043665634 @default.
- W4226309504 cites W2084502283 @default.
- W4226309504 cites W2090424610 @default.
- W4226309504 cites W2097915756 @default.
- W4226309504 cites W2101372905 @default.
- W4226309504 cites W2104391405 @default.
- W4226309504 cites W2107285841 @default.
- W4226309504 cites W2130325614 @default.
- W4226309504 cites W2136251662 @default.
- W4226309504 cites W2141057577 @default.
- W4226309504 cites W2157321686 @default.
- W4226309504 cites W2158445854 @default.
- W4226309504 cites W2164330327 @default.
- W4226309504 cites W2218782803 @default.
- W4226309504 cites W2257307118 @default.
- W4226309504 cites W2412588858 @default.
- W4226309504 cites W2471641792 @default.
- W4226309504 cites W2500751094 @default.
- W4226309504 cites W2516282711 @default.
- W4226309504 cites W2610884537 @default.
- W4226309504 cites W2618225899 @default.
- W4226309504 cites W2625894731 @default.
- W4226309504 cites W2732412926 @default.
- W4226309504 cites W2754274618 @default.
- W4226309504 cites W2799390666 @default.
- W4226309504 cites W2809113079 @default.
- W4226309504 cites W2901144234 @default.
- W4226309504 cites W2911964244 @default.
- W4226309504 cites W2945989246 @default.
- W4226309504 cites W2964808389 @default.
- W4226309504 cites W2991616716 @default.
- W4226309504 cites W2993182755 @default.
- W4226309504 cites W3100011500 @default.
- W4226309504 cites W3136363023 @default.
- W4226309504 cites W4255455317 @default.
- W4226309504 doi "https://doi.org/10.1109/jstars.2022.3157755" @default.
- W4226309504 hasPublicationYear "2022" @default.
- W4226309504 type Work @default.
- W4226309504 citedByCount "6" @default.
- W4226309504 countsByYear W42263095042022 @default.
- W4226309504 countsByYear W42263095042023 @default.
- W4226309504 crossrefType "journal-article" @default.
- W4226309504 hasAuthorship W4226309504A5008593937 @default.
- W4226309504 hasAuthorship W4226309504A5026947952 @default.
- W4226309504 hasAuthorship W4226309504A5028302981 @default.
- W4226309504 hasAuthorship W4226309504A5053152039 @default.
- W4226309504 hasAuthorship W4226309504A5064435849 @default.
- W4226309504 hasAuthorship W4226309504A5070629154 @default.
- W4226309504 hasBestOaLocation W42263095041 @default.
- W4226309504 hasConcept C108583219 @default.
- W4226309504 hasConcept C127313418 @default.
- W4226309504 hasConcept C153180895 @default.
- W4226309504 hasConcept C154945302 @default.
- W4226309504 hasConcept C159078339 @default.
- W4226309504 hasConcept C173163844 @default.
- W4226309504 hasConcept C18903297 @default.
- W4226309504 hasConcept C205372480 @default.
- W4226309504 hasConcept C2668921 @default.
- W4226309504 hasConcept C41008148 @default.
- W4226309504 hasConcept C52622490 @default.
- W4226309504 hasConcept C62649853 @default.
- W4226309504 hasConcept C81363708 @default.
- W4226309504 hasConcept C86803240 @default.
- W4226309504 hasConceptScore W4226309504C108583219 @default.
- W4226309504 hasConceptScore W4226309504C127313418 @default.
- W4226309504 hasConceptScore W4226309504C153180895 @default.
- W4226309504 hasConceptScore W4226309504C154945302 @default.
- W4226309504 hasConceptScore W4226309504C159078339 @default.
- W4226309504 hasConceptScore W4226309504C173163844 @default.
- W4226309504 hasConceptScore W4226309504C18903297 @default.
- W4226309504 hasConceptScore W4226309504C205372480 @default.
- W4226309504 hasConceptScore W4226309504C2668921 @default.
- W4226309504 hasConceptScore W4226309504C41008148 @default.
- W4226309504 hasConceptScore W4226309504C52622490 @default.
- W4226309504 hasConceptScore W4226309504C62649853 @default.
- W4226309504 hasConceptScore W4226309504C81363708 @default.
- W4226309504 hasConceptScore W4226309504C86803240 @default.
- W4226309504 hasFunder F4320321001 @default.
- W4226309504 hasLocation W42263095041 @default.
- W4226309504 hasOpenAccess W4226309504 @default.