Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226312022> ?p ?o ?g. }
- W4226312022 endingPage "291" @default.
- W4226312022 startingPage "267" @default.
- W4226312022 abstract "Accurate prediction of the internal corrosion rates of oil and gas pipelines could be an effective way to prevent pipeline leaks. In this study, a proposed framework for predicting corrosion rates under a small sample of metal corrosion data in the laboratory was developed to provide a new perspective on how to solve the problem of pipeline corrosion under the condition of insufficient real samples. This approach employed the bagging algorithm to construct a strong learner by integrating several KNN learners. A total of 99 data were collected and split into training and test set with a 9:1 ratio. The training set was used to obtain the best hyperparameters by 10-fold cross-validation and grid search, and the test set was used to determine the performance of the model. The results showed that the Mean Absolute Error (MAE) of this framework is 28.06% of the traditional model and outperforms other ensemble methods. Therefore, the proposed framework is suitable for metal corrosion prediction under small sample conditions." @default.
- W4226312022 created "2022-05-05" @default.
- W4226312022 creator A5013557394 @default.
- W4226312022 creator A5049692788 @default.
- W4226312022 creator A5063814047 @default.
- W4226312022 creator A5065251383 @default.
- W4226312022 creator A5065887506 @default.
- W4226312022 creator A5080444296 @default.
- W4226312022 date "2023-01-01" @default.
- W4226312022 modified "2023-10-11" @default.
- W4226312022 title "Metal Corrosion Rate Prediction of Small Samples Using an Ensemble Technique" @default.
- W4226312022 cites W1594031697 @default.
- W4226312022 cites W1678356000 @default.
- W4226312022 cites W1924290394 @default.
- W4226312022 cites W1965099927 @default.
- W4226312022 cites W1969401059 @default.
- W4226312022 cites W1988790447 @default.
- W4226312022 cites W2004076523 @default.
- W4226312022 cites W2011376672 @default.
- W4226312022 cites W2022604714 @default.
- W4226312022 cites W2023294425 @default.
- W4226312022 cites W2042518535 @default.
- W4226312022 cites W2053701026 @default.
- W4226312022 cites W2055420385 @default.
- W4226312022 cites W2056132907 @default.
- W4226312022 cites W2059342086 @default.
- W4226312022 cites W2067885219 @default.
- W4226312022 cites W2073403584 @default.
- W4226312022 cites W2081562328 @default.
- W4226312022 cites W2088252378 @default.
- W4226312022 cites W2103699041 @default.
- W4226312022 cites W2114968414 @default.
- W4226312022 cites W2131850858 @default.
- W4226312022 cites W2135293965 @default.
- W4226312022 cites W2140950054 @default.
- W4226312022 cites W2145862305 @default.
- W4226312022 cites W2153635508 @default.
- W4226312022 cites W2161110999 @default.
- W4226312022 cites W2164330572 @default.
- W4226312022 cites W2185967267 @default.
- W4226312022 cites W2218562169 @default.
- W4226312022 cites W2314883578 @default.
- W4226312022 cites W2556507341 @default.
- W4226312022 cites W2885020646 @default.
- W4226312022 cites W2888466235 @default.
- W4226312022 cites W2893361224 @default.
- W4226312022 cites W2976353133 @default.
- W4226312022 cites W3001792270 @default.
- W4226312022 cites W3014418864 @default.
- W4226312022 cites W3017343596 @default.
- W4226312022 cites W3049768978 @default.
- W4226312022 cites W3084926574 @default.
- W4226312022 cites W3087519653 @default.
- W4226312022 cites W3100236889 @default.
- W4226312022 cites W3101096144 @default.
- W4226312022 cites W3108198402 @default.
- W4226312022 cites W3120935587 @default.
- W4226312022 cites W3153965129 @default.
- W4226312022 cites W3177043504 @default.
- W4226312022 cites W3184671559 @default.
- W4226312022 cites W3185442130 @default.
- W4226312022 cites W3189301908 @default.
- W4226312022 cites W3216277563 @default.
- W4226312022 cites W4200301755 @default.
- W4226312022 cites W4205496101 @default.
- W4226312022 cites W4212883601 @default.
- W4226312022 cites W4241727697 @default.
- W4226312022 cites W4244238212 @default.
- W4226312022 doi "https://doi.org/10.32604/cmes.2022.020220" @default.
- W4226312022 hasPublicationYear "2023" @default.
- W4226312022 type Work @default.
- W4226312022 citedByCount "1" @default.
- W4226312022 countsByYear W42263120222023 @default.
- W4226312022 crossrefType "journal-article" @default.
- W4226312022 hasAuthorship W4226312022A5013557394 @default.
- W4226312022 hasAuthorship W4226312022A5049692788 @default.
- W4226312022 hasAuthorship W4226312022A5063814047 @default.
- W4226312022 hasAuthorship W4226312022A5065251383 @default.
- W4226312022 hasAuthorship W4226312022A5065887506 @default.
- W4226312022 hasAuthorship W4226312022A5080444296 @default.
- W4226312022 hasBestOaLocation W42263120221 @default.
- W4226312022 hasConcept C10485038 @default.
- W4226312022 hasConcept C12267149 @default.
- W4226312022 hasConcept C124101348 @default.
- W4226312022 hasConcept C127413603 @default.
- W4226312022 hasConcept C154945302 @default.
- W4226312022 hasConcept C175309249 @default.
- W4226312022 hasConcept C177264268 @default.
- W4226312022 hasConcept C185592680 @default.
- W4226312022 hasConcept C191897082 @default.
- W4226312022 hasConcept C192562407 @default.
- W4226312022 hasConcept C198531522 @default.
- W4226312022 hasConcept C199360897 @default.
- W4226312022 hasConcept C20625102 @default.
- W4226312022 hasConcept C41008148 @default.
- W4226312022 hasConcept C43521106 @default.
- W4226312022 hasConcept C43617362 @default.
- W4226312022 hasConcept C8642999 @default.