Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226314093> ?p ?o ?g. }
- W4226314093 endingPage "3821" @default.
- W4226314093 startingPage "3813" @default.
- W4226314093 abstract "Benign epilepsy with centrotemporal spikes (BECTS), the most common type of epilepsy among children, is considered a network disorder. Both fMRI and EEG source imaging (ESI) studies have indicated that BECTS is associated with static resting-state functional network (SFN) alterations (e.g., decreased global efficiency) in source space. However, we find that the abovementioned alterations are not significant when the SFN calculations are performed in the scalp space using only clinical routine low-density (e.g., 19 channels) EEG recordings (shown in our results). In the context of EEG microstates, it is clear that networks in the scalp space with resting-state EEG recordings dynamically reconfigure in a well-organized way based on different functional states. We are therefore inspired to propose a whole-brain dynamic resting-state functional network (DFN) computation method based on resting-state low-density EEG recordings with four classical microstates in scalp space. Notably, on the one hand, this approach is suitable for clinical conditions, and, on the other hand, the dynamic alternations calculated with a DFN may promote our understanding of how the networks change in BECTS. We analysed the changes in a DFN in six frequency bands (δ, θ, α <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>low</sub> , α <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>high</sub> , β, and γ) in patients with BECTS compared to those for healthy controls. Superior to traditional SFNs, the proposed DFN can reveal significant differences between individuals with BECTS and healthy controls (e.g., lower global efficiency), thus matching traditional fMRI and ESI methods in the source space. Our method directly performs DFN computations from low-density EEG recordings and avoids complex ESI computations, making it promising for clinical applications, especially in the outpatient diagnosis stage." @default.
- W4226314093 created "2022-05-05" @default.
- W4226314093 creator A5000949907 @default.
- W4226314093 creator A5021293751 @default.
- W4226314093 creator A5028631941 @default.
- W4226314093 creator A5030148992 @default.
- W4226314093 creator A5076717825 @default.
- W4226314093 creator A5083563437 @default.
- W4226314093 creator A5084950265 @default.
- W4226314093 creator A5091465313 @default.
- W4226314093 date "2022-08-01" @default.
- W4226314093 modified "2023-09-26" @default.
- W4226314093 title "Whole-Brain Dynamic Resting-State Functional Network Analysis in Benign Epilepsy With Centrotemporal Spikes" @default.
- W4226314093 cites W1826095641 @default.
- W4226314093 cites W1947329436 @default.
- W4226314093 cites W1976522288 @default.
- W4226314093 cites W1987430298 @default.
- W4226314093 cites W1994801733 @default.
- W4226314093 cites W2034778306 @default.
- W4226314093 cites W2054655287 @default.
- W4226314093 cites W2092131848 @default.
- W4226314093 cites W2098418070 @default.
- W4226314093 cites W2100959503 @default.
- W4226314093 cites W2105469293 @default.
- W4226314093 cites W2116809499 @default.
- W4226314093 cites W2125757815 @default.
- W4226314093 cites W2130031954 @default.
- W4226314093 cites W2131216884 @default.
- W4226314093 cites W2136386548 @default.
- W4226314093 cites W2167822639 @default.
- W4226314093 cites W2176686481 @default.
- W4226314093 cites W2238223458 @default.
- W4226314093 cites W2320054407 @default.
- W4226314093 cites W2463565780 @default.
- W4226314093 cites W2469677690 @default.
- W4226314093 cites W2512640226 @default.
- W4226314093 cites W2518691743 @default.
- W4226314093 cites W2531763032 @default.
- W4226314093 cites W2621395617 @default.
- W4226314093 cites W2742318813 @default.
- W4226314093 cites W2757893427 @default.
- W4226314093 cites W2772704314 @default.
- W4226314093 cites W2999596951 @default.
- W4226314093 cites W3036765640 @default.
- W4226314093 cites W3107820166 @default.
- W4226314093 cites W4245668478 @default.
- W4226314093 doi "https://doi.org/10.1109/jbhi.2022.3164907" @default.
- W4226314093 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35380976" @default.
- W4226314093 hasPublicationYear "2022" @default.
- W4226314093 type Work @default.
- W4226314093 citedByCount "4" @default.
- W4226314093 countsByYear W42263140932023 @default.
- W4226314093 crossrefType "journal-article" @default.
- W4226314093 hasAuthorship W4226314093A5000949907 @default.
- W4226314093 hasAuthorship W4226314093A5021293751 @default.
- W4226314093 hasAuthorship W4226314093A5028631941 @default.
- W4226314093 hasAuthorship W4226314093A5030148992 @default.
- W4226314093 hasAuthorship W4226314093A5076717825 @default.
- W4226314093 hasAuthorship W4226314093A5083563437 @default.
- W4226314093 hasAuthorship W4226314093A5084950265 @default.
- W4226314093 hasAuthorship W4226314093A5091465313 @default.
- W4226314093 hasConcept C105702510 @default.
- W4226314093 hasConcept C151730666 @default.
- W4226314093 hasConcept C153180895 @default.
- W4226314093 hasConcept C154945302 @default.
- W4226314093 hasConcept C15744967 @default.
- W4226314093 hasConcept C169760540 @default.
- W4226314093 hasConcept C2778186239 @default.
- W4226314093 hasConcept C2778515351 @default.
- W4226314093 hasConcept C2779343474 @default.
- W4226314093 hasConcept C2781312939 @default.
- W4226314093 hasConcept C28490314 @default.
- W4226314093 hasConcept C3018011982 @default.
- W4226314093 hasConcept C41008148 @default.
- W4226314093 hasConcept C522805319 @default.
- W4226314093 hasConcept C66324658 @default.
- W4226314093 hasConcept C71924100 @default.
- W4226314093 hasConcept C86803240 @default.
- W4226314093 hasConceptScore W4226314093C105702510 @default.
- W4226314093 hasConceptScore W4226314093C151730666 @default.
- W4226314093 hasConceptScore W4226314093C153180895 @default.
- W4226314093 hasConceptScore W4226314093C154945302 @default.
- W4226314093 hasConceptScore W4226314093C15744967 @default.
- W4226314093 hasConceptScore W4226314093C169760540 @default.
- W4226314093 hasConceptScore W4226314093C2778186239 @default.
- W4226314093 hasConceptScore W4226314093C2778515351 @default.
- W4226314093 hasConceptScore W4226314093C2779343474 @default.
- W4226314093 hasConceptScore W4226314093C2781312939 @default.
- W4226314093 hasConceptScore W4226314093C28490314 @default.
- W4226314093 hasConceptScore W4226314093C3018011982 @default.
- W4226314093 hasConceptScore W4226314093C41008148 @default.
- W4226314093 hasConceptScore W4226314093C522805319 @default.
- W4226314093 hasConceptScore W4226314093C66324658 @default.
- W4226314093 hasConceptScore W4226314093C71924100 @default.
- W4226314093 hasConceptScore W4226314093C86803240 @default.
- W4226314093 hasFunder F4320321001 @default.
- W4226314093 hasFunder F4320322847 @default.
- W4226314093 hasIssue "8" @default.