Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226316339> ?p ?o ?g. }
- W4226316339 endingPage "687" @default.
- W4226316339 startingPage "682" @default.
- W4226316339 abstract "This article is a general overview about artificial intelligence/machine learning (AI/ML) algorithms in the domain of peritoneal dialysis (PD).We searched studies that used AI/ML in PD, which were classified according to the type of algorithm and PD issue.Studies were divided into (a) predialytic stratification, (b) peritoneal technique issues, (c) infections, and (d) complications prediction. Most of the studies were observational and majority of them were reported after 2010.There is a number of studies proved that AI/ML algorithms can predict better than conventional statistical method and even nephrologists. However, the soundness of AI/ML algorithms in PD still requires large databases and interpretation by clinical experts. In the future, we hope that AI will facilitate the management of PD patients, thus increasing the quality of life and survival." @default.
- W4226316339 created "2022-05-05" @default.
- W4226316339 creator A5019155983 @default.
- W4226316339 creator A5036637454 @default.
- W4226316339 date "2022-04-26" @default.
- W4226316339 modified "2023-10-05" @default.
- W4226316339 title "Artificial intelligence in peritoneal dialysis: general overview" @default.
- W4226316339 cites W1844902057 @default.
- W4226316339 cites W1985848028 @default.
- W4226316339 cites W2027540165 @default.
- W4226316339 cites W2036356942 @default.
- W4226316339 cites W2038355445 @default.
- W4226316339 cites W2051269014 @default.
- W4226316339 cites W2131212205 @default.
- W4226316339 cites W2133595737 @default.
- W4226316339 cites W2329796166 @default.
- W4226316339 cites W2461949691 @default.
- W4226316339 cites W2549885908 @default.
- W4226316339 cites W2557738935 @default.
- W4226316339 cites W2597330433 @default.
- W4226316339 cites W2605253636 @default.
- W4226316339 cites W2754802194 @default.
- W4226316339 cites W2765571304 @default.
- W4226316339 cites W2770851097 @default.
- W4226316339 cites W2778570336 @default.
- W4226316339 cites W2807593075 @default.
- W4226316339 cites W2895763047 @default.
- W4226316339 cites W2900359145 @default.
- W4226316339 cites W2900627007 @default.
- W4226316339 cites W2912206724 @default.
- W4226316339 cites W2915058370 @default.
- W4226316339 cites W2936573766 @default.
- W4226316339 cites W2937307539 @default.
- W4226316339 cites W2950799027 @default.
- W4226316339 cites W2969528126 @default.
- W4226316339 cites W2972198749 @default.
- W4226316339 cites W2983033912 @default.
- W4226316339 cites W2995098893 @default.
- W4226316339 cites W2997653844 @default.
- W4226316339 cites W2998409174 @default.
- W4226316339 cites W3011696610 @default.
- W4226316339 cites W3011742849 @default.
- W4226316339 cites W3022497564 @default.
- W4226316339 cites W3035934119 @default.
- W4226316339 cites W3093201438 @default.
- W4226316339 cites W3095202475 @default.
- W4226316339 cites W3162149093 @default.
- W4226316339 cites W3165158189 @default.
- W4226316339 doi "https://doi.org/10.1080/0886022x.2022.2064304" @default.
- W4226316339 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35469549" @default.
- W4226316339 hasPublicationYear "2022" @default.
- W4226316339 type Work @default.
- W4226316339 citedByCount "3" @default.
- W4226316339 countsByYear W42263163392022 @default.
- W4226316339 countsByYear W42263163392023 @default.
- W4226316339 crossrefType "journal-article" @default.
- W4226316339 hasAuthorship W4226316339A5019155983 @default.
- W4226316339 hasAuthorship W4226316339A5036637454 @default.
- W4226316339 hasBestOaLocation W42263163391 @default.
- W4226316339 hasConcept C11413529 @default.
- W4226316339 hasConcept C119857082 @default.
- W4226316339 hasConcept C126322002 @default.
- W4226316339 hasConcept C154945302 @default.
- W4226316339 hasConcept C177713679 @default.
- W4226316339 hasConcept C199360897 @default.
- W4226316339 hasConcept C23131810 @default.
- W4226316339 hasConcept C2779056158 @default.
- W4226316339 hasConcept C39920170 @default.
- W4226316339 hasConcept C41008148 @default.
- W4226316339 hasConcept C71924100 @default.
- W4226316339 hasConceptScore W4226316339C11413529 @default.
- W4226316339 hasConceptScore W4226316339C119857082 @default.
- W4226316339 hasConceptScore W4226316339C126322002 @default.
- W4226316339 hasConceptScore W4226316339C154945302 @default.
- W4226316339 hasConceptScore W4226316339C177713679 @default.
- W4226316339 hasConceptScore W4226316339C199360897 @default.
- W4226316339 hasConceptScore W4226316339C23131810 @default.
- W4226316339 hasConceptScore W4226316339C2779056158 @default.
- W4226316339 hasConceptScore W4226316339C39920170 @default.
- W4226316339 hasConceptScore W4226316339C41008148 @default.
- W4226316339 hasConceptScore W4226316339C71924100 @default.
- W4226316339 hasFunder F4320328638 @default.
- W4226316339 hasIssue "1" @default.
- W4226316339 hasLocation W42263163391 @default.
- W4226316339 hasLocation W42263163392 @default.
- W4226316339 hasLocation W42263163393 @default.
- W4226316339 hasOpenAccess W4226316339 @default.
- W4226316339 hasPrimaryLocation W42263163391 @default.
- W4226316339 hasRelatedWork W1976403366 @default.
- W4226316339 hasRelatedWork W2018148067 @default.
- W4226316339 hasRelatedWork W2353514142 @default.
- W4226316339 hasRelatedWork W2414860771 @default.
- W4226316339 hasRelatedWork W2416659860 @default.
- W4226316339 hasRelatedWork W2892546985 @default.
- W4226316339 hasRelatedWork W2961085424 @default.
- W4226316339 hasRelatedWork W3003573233 @default.
- W4226316339 hasRelatedWork W3012805408 @default.
- W4226316339 hasRelatedWork W4238743540 @default.