Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226326514> ?p ?o ?g. }
- W4226326514 endingPage "114227" @default.
- W4226326514 startingPage "114227" @default.
- W4226326514 abstract "• A convolutional neural network recognizing symmetry of planar structures is established. • Automated symmetry identification is converted to classification problem of pictures. • The proposed method is robust for structures with C n or C nv symmetry. In both natural and man-made structures, symmetry provides a range of desirable properties such as uniform distributions of internal forces, concise transmission paths of forces, as well as rhythm and beauty. Most research on symmetry focus on natural objects to promote the developments in computer vision. However, countless engineering structures also contain symmetry elements since ancient times. In fact, many scholars have investigated symmetry in engineering structures, but most of them are based on analytical methods which require tedious calculations. Inspired by the application of deep learning in image identification, in this paper, we use two Convolutional Neural Networks (CNNs) to respectively identify the symmetry group and symmetry order of planar engineering structures. To this end, two different datasets with labels for symmetric structures are created. Then, the datasets are used to train and test the constructed network models. For symmetry classification, it achieves 86.69% accuracy, which takes about 0.006 s to predict one picture. On the other hand, for symmetry order recognition, it reaches 92% accuracy, which expends about 0.005 s to identify an image. This method provides an efficient approach to the exploration of structural symmetry, which can be expanded and developed further toward the identification of symmetry in three-dimensional structures." @default.
- W4226326514 created "2022-05-05" @default.
- W4226326514 creator A5050018737 @default.
- W4226326514 creator A5053291500 @default.
- W4226326514 creator A5060842906 @default.
- W4226326514 creator A5064574609 @default.
- W4226326514 creator A5090282181 @default.
- W4226326514 date "2022-06-01" @default.
- W4226326514 modified "2023-10-16" @default.
- W4226326514 title "Structural symmetry recognition in planar structures using Convolutional Neural Networks" @default.
- W4226326514 cites W1973805104 @default.
- W4226326514 cites W1988010545 @default.
- W4226326514 cites W2010553560 @default.
- W4226326514 cites W2052782578 @default.
- W4226326514 cites W2087864267 @default.
- W4226326514 cites W2141299360 @default.
- W4226326514 cites W2157896175 @default.
- W4226326514 cites W2189802186 @default.
- W4226326514 cites W2232030834 @default.
- W4226326514 cites W2607081783 @default.
- W4226326514 cites W2611655888 @default.
- W4226326514 cites W2727408958 @default.
- W4226326514 cites W2784090160 @default.
- W4226326514 cites W2899751348 @default.
- W4226326514 cites W2915866732 @default.
- W4226326514 cites W2924973940 @default.
- W4226326514 cites W2944953298 @default.
- W4226326514 cites W2960671912 @default.
- W4226326514 cites W2963981795 @default.
- W4226326514 cites W2969670837 @default.
- W4226326514 cites W2969686671 @default.
- W4226326514 cites W2980847173 @default.
- W4226326514 cites W2992127101 @default.
- W4226326514 cites W2997650689 @default.
- W4226326514 cites W3000645357 @default.
- W4226326514 cites W3012135036 @default.
- W4226326514 cites W3029048954 @default.
- W4226326514 cites W3034245108 @default.
- W4226326514 cites W3035529687 @default.
- W4226326514 cites W3059693674 @default.
- W4226326514 cites W3162154139 @default.
- W4226326514 cites W3194168082 @default.
- W4226326514 cites W3194424548 @default.
- W4226326514 cites W4214577195 @default.
- W4226326514 cites W4246373286 @default.
- W4226326514 cites W577636886 @default.
- W4226326514 doi "https://doi.org/10.1016/j.engstruct.2022.114227" @default.
- W4226326514 hasPublicationYear "2022" @default.
- W4226326514 type Work @default.
- W4226326514 citedByCount "37" @default.
- W4226326514 countsByYear W42263265142022 @default.
- W4226326514 countsByYear W42263265142023 @default.
- W4226326514 crossrefType "journal-article" @default.
- W4226326514 hasAuthorship W4226326514A5050018737 @default.
- W4226326514 hasAuthorship W4226326514A5053291500 @default.
- W4226326514 hasAuthorship W4226326514A5060842906 @default.
- W4226326514 hasAuthorship W4226326514A5064574609 @default.
- W4226326514 hasAuthorship W4226326514A5090282181 @default.
- W4226326514 hasConcept C108583219 @default.
- W4226326514 hasConcept C11413529 @default.
- W4226326514 hasConcept C116834253 @default.
- W4226326514 hasConcept C121684516 @default.
- W4226326514 hasConcept C134786449 @default.
- W4226326514 hasConcept C153180895 @default.
- W4226326514 hasConcept C154945302 @default.
- W4226326514 hasConcept C20892832 @default.
- W4226326514 hasConcept C2524010 @default.
- W4226326514 hasConcept C2779886137 @default.
- W4226326514 hasConcept C33923547 @default.
- W4226326514 hasConcept C41008148 @default.
- W4226326514 hasConcept C50644808 @default.
- W4226326514 hasConcept C59822182 @default.
- W4226326514 hasConcept C81363708 @default.
- W4226326514 hasConcept C86803240 @default.
- W4226326514 hasConceptScore W4226326514C108583219 @default.
- W4226326514 hasConceptScore W4226326514C11413529 @default.
- W4226326514 hasConceptScore W4226326514C116834253 @default.
- W4226326514 hasConceptScore W4226326514C121684516 @default.
- W4226326514 hasConceptScore W4226326514C134786449 @default.
- W4226326514 hasConceptScore W4226326514C153180895 @default.
- W4226326514 hasConceptScore W4226326514C154945302 @default.
- W4226326514 hasConceptScore W4226326514C20892832 @default.
- W4226326514 hasConceptScore W4226326514C2524010 @default.
- W4226326514 hasConceptScore W4226326514C2779886137 @default.
- W4226326514 hasConceptScore W4226326514C33923547 @default.
- W4226326514 hasConceptScore W4226326514C41008148 @default.
- W4226326514 hasConceptScore W4226326514C50644808 @default.
- W4226326514 hasConceptScore W4226326514C59822182 @default.
- W4226326514 hasConceptScore W4226326514C81363708 @default.
- W4226326514 hasConceptScore W4226326514C86803240 @default.
- W4226326514 hasLocation W42263265141 @default.
- W4226326514 hasOpenAccess W4226326514 @default.
- W4226326514 hasPrimaryLocation W42263265141 @default.
- W4226326514 hasRelatedWork W2731899572 @default.
- W4226326514 hasRelatedWork W2732542196 @default.
- W4226326514 hasRelatedWork W2738221750 @default.
- W4226326514 hasRelatedWork W3116150086 @default.
- W4226326514 hasRelatedWork W3133861977 @default.