Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226329077> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4226329077 endingPage "18078" @default.
- W4226329077 startingPage "18064" @default.
- W4226329077 abstract "Mobile crowdsensing (MCS), as an alternative to traditional sensor networks, has attracted much research attention because of its flexibility and low deployment fee. Compared with the traditional sensor networks, MCS exploits existing network infrastructures (such as edge servers and user devices) to intelligently cooperate with smart device owners. In this way, MCS combines machine intelligence and human intelligence to perform various sensing tasks more efficiently with a significantly lower cost. A challenging problem in MCS is data uploading, where mobile phone users as workers need to upload collected data to an MCS platform. In Xu and Song (2022), we proposed a heuristic approach to make a data transmission plan between mobile phone users and edge servers, which can help an MCS system leverage network resources in edge servers to facilitate data uploading efficiently. In this article, we reinvestigate the data uploading problem in Xu and Song (2022), analyze the heuristic approach’s drawbacks, and propose a deep reinforcement learning (DRL)-based method to complement these drawbacks. Specifically, we show that the heuristic approach may not sufficiently address heterogeneous cases, although it can achieve high efficiency in the homogeneous scenarios. Furthermore, we find that the heuristic method is not a one-fit-for-all method and cannot adjust itself when facing new scenarios. Instead of making a new fixed heuristic to deal with these new scenarios, we design an adaptive method based on DRL and graph neural networks (GNNs) to learn heuristics, enabling the new method to handle all possible situations in theory. Specifically, we train a DRL agent with a group of data uploading instances and then generalize the agent to other instances. Extensive numerical results show that the DRL-based approach achieves a high approximation ratio and performs stably in all sorts of experiment settings." @default.
- W4226329077 created "2022-05-05" @default.
- W4226329077 creator A5071456775 @default.
- W4226329077 creator A5076739856 @default.
- W4226329077 date "2022-09-15" @default.
- W4226329077 modified "2023-10-12" @default.
- W4226329077 title "An Adaptive Data Uploading Scheme for Mobile Crowdsensing via Deep Reinforcement Learning With Graph Neural Network" @default.
- W4226329077 cites W2032419831 @default.
- W4226329077 cites W2145339207 @default.
- W4226329077 cites W2735680672 @default.
- W4226329077 cites W2746553466 @default.
- W4226329077 cites W2790295836 @default.
- W4226329077 cites W2938135176 @default.
- W4226329077 cites W2944935235 @default.
- W4226329077 cites W2953002421 @default.
- W4226329077 cites W2962804345 @default.
- W4226329077 cites W2970920473 @default.
- W4226329077 cites W2998186469 @default.
- W4226329077 cites W3017967519 @default.
- W4226329077 cites W3035166059 @default.
- W4226329077 cites W3036230618 @default.
- W4226329077 cites W3114547504 @default.
- W4226329077 cites W3197382768 @default.
- W4226329077 doi "https://doi.org/10.1109/jiot.2022.3163456" @default.
- W4226329077 hasPublicationYear "2022" @default.
- W4226329077 type Work @default.
- W4226329077 citedByCount "3" @default.
- W4226329077 countsByYear W42263290772022 @default.
- W4226329077 countsByYear W42263290772023 @default.
- W4226329077 crossrefType "journal-article" @default.
- W4226329077 hasAuthorship W4226329077A5071456775 @default.
- W4226329077 hasAuthorship W4226329077A5076739856 @default.
- W4226329077 hasConcept C111919701 @default.
- W4226329077 hasConcept C119857082 @default.
- W4226329077 hasConcept C127705205 @default.
- W4226329077 hasConcept C154945302 @default.
- W4226329077 hasConcept C162307627 @default.
- W4226329077 hasConcept C173801870 @default.
- W4226329077 hasConcept C2776061582 @default.
- W4226329077 hasConcept C2778456923 @default.
- W4226329077 hasConcept C31258907 @default.
- W4226329077 hasConcept C41008148 @default.
- W4226329077 hasConcept C71901391 @default.
- W4226329077 hasConcept C93996380 @default.
- W4226329077 hasConcept C97541855 @default.
- W4226329077 hasConceptScore W4226329077C111919701 @default.
- W4226329077 hasConceptScore W4226329077C119857082 @default.
- W4226329077 hasConceptScore W4226329077C127705205 @default.
- W4226329077 hasConceptScore W4226329077C154945302 @default.
- W4226329077 hasConceptScore W4226329077C162307627 @default.
- W4226329077 hasConceptScore W4226329077C173801870 @default.
- W4226329077 hasConceptScore W4226329077C2776061582 @default.
- W4226329077 hasConceptScore W4226329077C2778456923 @default.
- W4226329077 hasConceptScore W4226329077C31258907 @default.
- W4226329077 hasConceptScore W4226329077C41008148 @default.
- W4226329077 hasConceptScore W4226329077C71901391 @default.
- W4226329077 hasConceptScore W4226329077C93996380 @default.
- W4226329077 hasConceptScore W4226329077C97541855 @default.
- W4226329077 hasFunder F4320319980 @default.
- W4226329077 hasFunder F4320334593 @default.
- W4226329077 hasIssue "18" @default.
- W4226329077 hasLocation W42263290771 @default.
- W4226329077 hasOpenAccess W4226329077 @default.
- W4226329077 hasPrimaryLocation W42263290771 @default.
- W4226329077 hasRelatedWork W2959276766 @default.
- W4226329077 hasRelatedWork W2981507084 @default.
- W4226329077 hasRelatedWork W3106610906 @default.
- W4226329077 hasRelatedWork W3111983280 @default.
- W4226329077 hasRelatedWork W3116709161 @default.
- W4226329077 hasRelatedWork W3117321386 @default.
- W4226329077 hasRelatedWork W3174690704 @default.
- W4226329077 hasRelatedWork W4287990712 @default.
- W4226329077 hasRelatedWork W4310080053 @default.
- W4226329077 hasRelatedWork W4312815336 @default.
- W4226329077 hasVolume "9" @default.
- W4226329077 isParatext "false" @default.
- W4226329077 isRetracted "false" @default.
- W4226329077 workType "article" @default.