Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226333978> ?p ?o ?g. }
- W4226333978 endingPage "122839" @default.
- W4226333978 startingPage "122839" @default.
- W4226333978 abstract "Minimum film boiling temperature (TMFB) is a crucial parameter in post-critical heat flux (CHF) condition by determining the collapse of stable vapor film on overheated surface. Although many correlations have been suggested with a wide range of experimental data to predict the TMFB considering various parameters, they have failed to accommodate the universal quenching data due to limited regression capability addressing effects of multivariate parameters. Even though several data-driven machine learning models (DDML) showed improved prediction performance, their performance are dramatically degraded in extrapolation conditions, which are unincluded in the training process. To overcome the inherent problems of conventional correlations and DDMLs, physics-informed machine learning-aided frameworks (PIMLAF) for TMFB were developed in this study by combining the conventional correlations (Henry model and Groeneveld-Stewart correlation) and machine learning techniques (multi-layer perceptron and random forest) to overcome their limited regression capability and ‘black-box’ characteristics. For the interpolation condition, it was observed that the Groeneveld-Stewart correlation provides better baseline for TMFB than Henry model, and random forest (RF) model has advantage discovering the pattern between TMFB and input variables with tuning capability. Through benchmark studies corresponding to extrapolation condition of the training dataset, it was concluded that hybrid approach of RF model and Groeneveld-Stewart correlation exhibits the best performance on TMFB prediction for both interpolation and extrapolation conditions compared to standalone machine learning models, Groeneveld-Stewart correlation, and MLP-based PIMLAF. The suggested RF-based PIMLAF is expected to enhance the TMFB prediction performance during reflood phase of loss of coolant accidents in light water reactors." @default.
- W4226333978 created "2022-05-05" @default.
- W4226333978 creator A5026415624 @default.
- W4226333978 creator A5044024451 @default.
- W4226333978 creator A5090695918 @default.
- W4226333978 date "2022-08-01" @default.
- W4226333978 modified "2023-10-13" @default.
- W4226333978 title "Physics-informed machine learning-aided framework for prediction of minimum film boiling temperature" @default.
- W4226333978 cites W1579044420 @default.
- W4226333978 cites W1964551283 @default.
- W4226333978 cites W1965757351 @default.
- W4226333978 cites W1968326286 @default.
- W4226333978 cites W1968451016 @default.
- W4226333978 cites W1968530908 @default.
- W4226333978 cites W1983203570 @default.
- W4226333978 cites W1998654375 @default.
- W4226333978 cites W2006304701 @default.
- W4226333978 cites W2008636294 @default.
- W4226333978 cites W2024151772 @default.
- W4226333978 cites W2024578380 @default.
- W4226333978 cites W2029164524 @default.
- W4226333978 cites W2034863665 @default.
- W4226333978 cites W2052521110 @default.
- W4226333978 cites W2064076279 @default.
- W4226333978 cites W2069622966 @default.
- W4226333978 cites W2076533719 @default.
- W4226333978 cites W2091757906 @default.
- W4226333978 cites W2103496339 @default.
- W4226333978 cites W2119029195 @default.
- W4226333978 cites W2166898022 @default.
- W4226333978 cites W2410870793 @default.
- W4226333978 cites W251463186 @default.
- W4226333978 cites W2567522847 @default.
- W4226333978 cites W2618932093 @default.
- W4226333978 cites W2766745943 @default.
- W4226333978 cites W2769654819 @default.
- W4226333978 cites W2773375672 @default.
- W4226333978 cites W2792575714 @default.
- W4226333978 cites W2801351558 @default.
- W4226333978 cites W2910653063 @default.
- W4226333978 cites W2912523979 @default.
- W4226333978 cites W2953532183 @default.
- W4226333978 cites W2964970276 @default.
- W4226333978 cites W2972468788 @default.
- W4226333978 cites W2993749445 @default.
- W4226333978 cites W2994070579 @default.
- W4226333978 cites W2997791226 @default.
- W4226333978 cites W3002309009 @default.
- W4226333978 cites W3023684177 @default.
- W4226333978 cites W3081064058 @default.
- W4226333978 cites W3114167306 @default.
- W4226333978 cites W3128553100 @default.
- W4226333978 cites W3135457600 @default.
- W4226333978 cites W3157852198 @default.
- W4226333978 cites W3173932447 @default.
- W4226333978 cites W3183165060 @default.
- W4226333978 cites W4200493029 @default.
- W4226333978 cites W4250179588 @default.
- W4226333978 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2022.122839" @default.
- W4226333978 hasPublicationYear "2022" @default.
- W4226333978 type Work @default.
- W4226333978 citedByCount "7" @default.
- W4226333978 countsByYear W42263339782022 @default.
- W4226333978 countsByYear W42263339782023 @default.
- W4226333978 crossrefType "journal-article" @default.
- W4226333978 hasAuthorship W4226333978A5026415624 @default.
- W4226333978 hasAuthorship W4226333978A5044024451 @default.
- W4226333978 hasAuthorship W4226333978A5090695918 @default.
- W4226333978 hasConcept C104114177 @default.
- W4226333978 hasConcept C105795698 @default.
- W4226333978 hasConcept C119857082 @default.
- W4226333978 hasConcept C132459708 @default.
- W4226333978 hasConcept C137800194 @default.
- W4226333978 hasConcept C154945302 @default.
- W4226333978 hasConcept C169258074 @default.
- W4226333978 hasConcept C22019652 @default.
- W4226333978 hasConcept C33923547 @default.
- W4226333978 hasConcept C41008148 @default.
- W4226333978 hasConcept C50644808 @default.
- W4226333978 hasConcept C60908668 @default.
- W4226333978 hasConcept C81692654 @default.
- W4226333978 hasConcept C83546350 @default.
- W4226333978 hasConceptScore W4226333978C104114177 @default.
- W4226333978 hasConceptScore W4226333978C105795698 @default.
- W4226333978 hasConceptScore W4226333978C119857082 @default.
- W4226333978 hasConceptScore W4226333978C132459708 @default.
- W4226333978 hasConceptScore W4226333978C137800194 @default.
- W4226333978 hasConceptScore W4226333978C154945302 @default.
- W4226333978 hasConceptScore W4226333978C169258074 @default.
- W4226333978 hasConceptScore W4226333978C22019652 @default.
- W4226333978 hasConceptScore W4226333978C33923547 @default.
- W4226333978 hasConceptScore W4226333978C41008148 @default.
- W4226333978 hasConceptScore W4226333978C50644808 @default.
- W4226333978 hasConceptScore W4226333978C60908668 @default.
- W4226333978 hasConceptScore W4226333978C81692654 @default.
- W4226333978 hasConceptScore W4226333978C83546350 @default.
- W4226333978 hasLocation W42263339781 @default.
- W4226333978 hasOpenAccess W4226333978 @default.