Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226337346> ?p ?o ?g. }
- W4226337346 endingPage "186" @default.
- W4226337346 startingPage "149" @default.
- W4226337346 abstract "A new method for optimal integration of renewable energy sources (RESs) in the electrical distribution system (EDS) that is based on the deployment of photovoltaic solar panels and wind turbines is presented in this chapter. In this chapter, a new optimization algorithm has been proposed to solve the techno-economic analysis problem of optimal location and sizing of RES-based distributed generators (DG) in the EDS. The objectives of the proposed optimization technique are reducing the active power loss (APL) index and improving the two following indices: total voltage variation (TVV) and total operating cost (TOC). This chapter aims to apply a modified whale optimization algorithm (WOA), which is named cosine adapted WOA algorithm (CAWOA). The CAWOA is proposed to solve this problem considering the previously mentioned indices as the multiobjective function, subject to equality and inequality constraints. These constraints are based on two types of distributed generators (DGs): photovoltaic-based generators (PV-DG) that inject only active power (i.e., maintain a unity power factor) and wind-based generators (WT-DG) that inject both active and reactive powers with an optimum lagging power factor, which influences the power losses. The approach is applied to the standard IEEE 33-, 69-, and 118-bus EDS. Numerical and graphical comparative studies are conducted to benchmark the CAWOA results against those obtained using other powerful algorithms existing in the literature. Active and reactive branch currents are calculated and plotted to show how the DG types affect the current flow in the distribution lines. The active and reactive branch currents are calculated, and the results show that the currents are minimized after the installation of DGs, and the profile of the current is reduced more by the presence of WT-DGs. Careful and realistic results have been attained by a linear change in loads; the loadability results show that the total power losses and the voltage profiles are proportional with the increasing or decreasing of loads. To show the performance of the proposed algorithms, the obtained results have been compared with other excising results algorithms from the literature, the comparative study shows that CAWOA is better than the compared algorithms in terms of minimizing the power losses of the studied systems, also it’s performed well and obtain better results considering the same number of DGs installed in the systems. In general, the results show that CAWAO can handle this type of the proposed objective function. This research work gives guidelines and hints for power distribution companies to reduce power losses. This reduction in power losses will enable utilities to avoid penalties and compensations incurred, which results in improving profitability margins. This work will also help the power distribution companies in incorporating small-sized renewable energy sources into distribution networks easily and more reliably." @default.
- W4226337346 created "2022-05-05" @default.
- W4226337346 creator A5006957394 @default.
- W4226337346 creator A5059944825 @default.
- W4226337346 creator A5065897746 @default.
- W4226337346 date "2022-01-01" @default.
- W4226337346 modified "2023-10-16" @default.
- W4226337346 title "Optimal allocation of renewable energy sources in electrical distribution systems based on technical and economic indices" @default.
- W4226337346 cites W1996114350 @default.
- W4226337346 cites W1999234311 @default.
- W4226337346 cites W2013911091 @default.
- W4226337346 cites W2040995955 @default.
- W4226337346 cites W2065363240 @default.
- W4226337346 cites W2189004960 @default.
- W4226337346 cites W2216739272 @default.
- W4226337346 cites W2290883490 @default.
- W4226337346 cites W2544935476 @default.
- W4226337346 cites W2550726023 @default.
- W4226337346 cites W2550768464 @default.
- W4226337346 cites W2555334091 @default.
- W4226337346 cites W2594240253 @default.
- W4226337346 cites W2606997908 @default.
- W4226337346 cites W2607980421 @default.
- W4226337346 cites W2617800229 @default.
- W4226337346 cites W2746811316 @default.
- W4226337346 cites W2747833560 @default.
- W4226337346 cites W2766136214 @default.
- W4226337346 cites W2778290439 @default.
- W4226337346 cites W2793401331 @default.
- W4226337346 cites W2793965830 @default.
- W4226337346 cites W2802430592 @default.
- W4226337346 cites W2809276846 @default.
- W4226337346 cites W2810858421 @default.
- W4226337346 cites W2889797601 @default.
- W4226337346 cites W2891271565 @default.
- W4226337346 cites W2898550491 @default.
- W4226337346 cites W2907989008 @default.
- W4226337346 cites W2913003339 @default.
- W4226337346 cites W2914156675 @default.
- W4226337346 cites W2914791603 @default.
- W4226337346 cites W2919423725 @default.
- W4226337346 cites W2927178475 @default.
- W4226337346 cites W2928943227 @default.
- W4226337346 cites W2945672339 @default.
- W4226337346 cites W2978420736 @default.
- W4226337346 cites W2994845742 @default.
- W4226337346 cites W3004061517 @default.
- W4226337346 cites W3006764547 @default.
- W4226337346 cites W3009206965 @default.
- W4226337346 cites W3010250576 @default.
- W4226337346 cites W3011323374 @default.
- W4226337346 cites W3021864205 @default.
- W4226337346 cites W3034517742 @default.
- W4226337346 cites W3047359380 @default.
- W4226337346 doi "https://doi.org/10.1016/b978-0-323-91228-0.00014-8" @default.
- W4226337346 hasPublicationYear "2022" @default.
- W4226337346 type Work @default.
- W4226337346 citedByCount "0" @default.
- W4226337346 crossrefType "book-chapter" @default.
- W4226337346 hasAuthorship W4226337346A5006957394 @default.
- W4226337346 hasAuthorship W4226337346A5059944825 @default.
- W4226337346 hasAuthorship W4226337346A5065897746 @default.
- W4226337346 hasConcept C108755667 @default.
- W4226337346 hasConcept C119599485 @default.
- W4226337346 hasConcept C126255220 @default.
- W4226337346 hasConcept C127413603 @default.
- W4226337346 hasConcept C13280743 @default.
- W4226337346 hasConcept C142362112 @default.
- W4226337346 hasConcept C153349607 @default.
- W4226337346 hasConcept C165801399 @default.
- W4226337346 hasConcept C185798385 @default.
- W4226337346 hasConcept C188573790 @default.
- W4226337346 hasConcept C205649164 @default.
- W4226337346 hasConcept C2777767291 @default.
- W4226337346 hasConcept C33923547 @default.
- W4226337346 hasConcept C41008148 @default.
- W4226337346 hasConcept C41291067 @default.
- W4226337346 hasConcept C544738498 @default.
- W4226337346 hasConcept C78600449 @default.
- W4226337346 hasConceptScore W4226337346C108755667 @default.
- W4226337346 hasConceptScore W4226337346C119599485 @default.
- W4226337346 hasConceptScore W4226337346C126255220 @default.
- W4226337346 hasConceptScore W4226337346C127413603 @default.
- W4226337346 hasConceptScore W4226337346C13280743 @default.
- W4226337346 hasConceptScore W4226337346C142362112 @default.
- W4226337346 hasConceptScore W4226337346C153349607 @default.
- W4226337346 hasConceptScore W4226337346C165801399 @default.
- W4226337346 hasConceptScore W4226337346C185798385 @default.
- W4226337346 hasConceptScore W4226337346C188573790 @default.
- W4226337346 hasConceptScore W4226337346C205649164 @default.
- W4226337346 hasConceptScore W4226337346C2777767291 @default.
- W4226337346 hasConceptScore W4226337346C33923547 @default.
- W4226337346 hasConceptScore W4226337346C41008148 @default.
- W4226337346 hasConceptScore W4226337346C41291067 @default.
- W4226337346 hasConceptScore W4226337346C544738498 @default.
- W4226337346 hasConceptScore W4226337346C78600449 @default.
- W4226337346 hasLocation W42263373461 @default.
- W4226337346 hasOpenAccess W4226337346 @default.