Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226346370> ?p ?o ?g. }
- W4226346370 endingPage "36894" @default.
- W4226346370 startingPage "36884" @default.
- W4226346370 abstract "Fusion is a strategy for collecting data from multiple images in order to improve information quality. Infrared images can recognise objects from their surroundings depending mostly on radiation disparity, which works better in all weather conditions as well as irrespective of whether it is day or night. Visible images can integrate texture information with great visual precision and in detail that matches with human visual system. Integrating the benefits of thermal radiation information with precise visual information from infrared and visible modalities is a good idea. The presented algorithm utilises the <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$ell _{2} $ </tex-math></inline-formula> norm and a combination of residual networks for combining the complementary information from both image modalities. The encoder consist of convolutional layers with selected residual connections in which the output of each layer is associated with each other layer. The <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$ell _{2} $ </tex-math></inline-formula> norm approach is then used to fuse the two featuremaps. At last, decoder recreates the fused image. The large mutual information value of 14.85084 indicates more complementary information retained in the fused image than in the infrared and visible images. The large entropy value of 6.92286 indicates more information content in the fused image and the fused image is equipped with more edge information. The proposed architecture collect more pixel values from both infrared and visible image and the fused image looks more natural as it contain more textual content. The proposed system accomplishes a noteworthy performance with the existing models." @default.
- W4226346370 created "2022-05-05" @default.
- W4226346370 creator A5019763726 @default.
- W4226346370 creator A5025059621 @default.
- W4226346370 date "2022-01-01" @default.
- W4226346370 modified "2023-10-14" @default.
- W4226346370 title "Deep Learning L2 Norm Fusion for Infrared & Visible Images" @default.
- W4226346370 cites W1010868406 @default.
- W4226346370 cites W1580436348 @default.
- W4226346370 cites W1708141795 @default.
- W4226346370 cites W1861492603 @default.
- W4226346370 cites W1980382026 @default.
- W4226346370 cites W2005682787 @default.
- W4226346370 cites W2040833130 @default.
- W4226346370 cites W2046119925 @default.
- W4226346370 cites W2081195086 @default.
- W4226346370 cites W2084176623 @default.
- W4226346370 cites W2091484864 @default.
- W4226346370 cites W2114771311 @default.
- W4226346370 cites W2133665775 @default.
- W4226346370 cites W2256359941 @default.
- W4226346370 cites W2266694576 @default.
- W4226346370 cites W2287168411 @default.
- W4226346370 cites W2363659267 @default.
- W4226346370 cites W2444656462 @default.
- W4226346370 cites W2532801510 @default.
- W4226346370 cites W2559870345 @default.
- W4226346370 cites W2589745805 @default.
- W4226346370 cites W2590003272 @default.
- W4226346370 cites W2606716941 @default.
- W4226346370 cites W2610070095 @default.
- W4226346370 cites W2613594293 @default.
- W4226346370 cites W2763073006 @default.
- W4226346370 cites W2772136803 @default.
- W4226346370 cites W2798018774 @default.
- W4226346370 cites W2809216229 @default.
- W4226346370 cites W2809795042 @default.
- W4226346370 cites W2912147220 @default.
- W4226346370 cites W2963134949 @default.
- W4226346370 cites W2963530785 @default.
- W4226346370 cites W2963787388 @default.
- W4226346370 cites W2964660724 @default.
- W4226346370 cites W2971071255 @default.
- W4226346370 cites W3007891240 @default.
- W4226346370 cites W3105639468 @default.
- W4226346370 doi "https://doi.org/10.1109/access.2022.3164426" @default.
- W4226346370 hasPublicationYear "2022" @default.
- W4226346370 type Work @default.
- W4226346370 citedByCount "4" @default.
- W4226346370 countsByYear W42263463702022 @default.
- W4226346370 countsByYear W42263463702023 @default.
- W4226346370 crossrefType "journal-article" @default.
- W4226346370 hasAuthorship W4226346370A5019763726 @default.
- W4226346370 hasAuthorship W4226346370A5025059621 @default.
- W4226346370 hasBestOaLocation W42263463701 @default.
- W4226346370 hasConcept C11413529 @default.
- W4226346370 hasConcept C115961682 @default.
- W4226346370 hasConcept C153180895 @default.
- W4226346370 hasConcept C154945302 @default.
- W4226346370 hasConcept C155512373 @default.
- W4226346370 hasConcept C17744445 @default.
- W4226346370 hasConcept C191795146 @default.
- W4226346370 hasConcept C199539241 @default.
- W4226346370 hasConcept C31972630 @default.
- W4226346370 hasConcept C33923547 @default.
- W4226346370 hasConcept C41008148 @default.
- W4226346370 hasConcept C45357846 @default.
- W4226346370 hasConcept C69744172 @default.
- W4226346370 hasConcept C94375191 @default.
- W4226346370 hasConceptScore W4226346370C11413529 @default.
- W4226346370 hasConceptScore W4226346370C115961682 @default.
- W4226346370 hasConceptScore W4226346370C153180895 @default.
- W4226346370 hasConceptScore W4226346370C154945302 @default.
- W4226346370 hasConceptScore W4226346370C155512373 @default.
- W4226346370 hasConceptScore W4226346370C17744445 @default.
- W4226346370 hasConceptScore W4226346370C191795146 @default.
- W4226346370 hasConceptScore W4226346370C199539241 @default.
- W4226346370 hasConceptScore W4226346370C31972630 @default.
- W4226346370 hasConceptScore W4226346370C33923547 @default.
- W4226346370 hasConceptScore W4226346370C41008148 @default.
- W4226346370 hasConceptScore W4226346370C45357846 @default.
- W4226346370 hasConceptScore W4226346370C69744172 @default.
- W4226346370 hasConceptScore W4226346370C94375191 @default.
- W4226346370 hasFunder F4320318362 @default.
- W4226346370 hasLocation W42263463701 @default.
- W4226346370 hasOpenAccess W4226346370 @default.
- W4226346370 hasPrimaryLocation W42263463701 @default.
- W4226346370 hasRelatedWork W1968790341 @default.
- W4226346370 hasRelatedWork W1979848552 @default.
- W4226346370 hasRelatedWork W1990216444 @default.
- W4226346370 hasRelatedWork W2010729749 @default.
- W4226346370 hasRelatedWork W2101992317 @default.
- W4226346370 hasRelatedWork W2419576664 @default.
- W4226346370 hasRelatedWork W2900568167 @default.
- W4226346370 hasRelatedWork W3007420330 @default.
- W4226346370 hasRelatedWork W4312613727 @default.
- W4226346370 hasRelatedWork W2318670660 @default.
- W4226346370 hasVolume "10" @default.