Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226346420> ?p ?o ?g. }
- W4226346420 endingPage "17556" @default.
- W4226346420 startingPage "17534" @default.
- W4226346420 abstract "Abstract In this work we deal with the problem of detecting and explaining anomalous values in categorical datasets. We take the perspective of perceiving an attribute value as anomalous if its frequency is exceptional within the overall distribution of frequencies. As a first main contribution, we provide the notion of frequency occurrence . This measure can be thought of as a form of Kernel Density Estimation applied to the domain of frequency values. As a second contribution, we define an outlierness measure for categorical values that leverages the cumulated frequency distribution of the frequency occurrence distribution. This measure is able to identify two kinds of anomalies, called lower outliers and upper outliers , corresponding to exceptionally low or high frequent values. Moreover, we provide interpretable explanations for anomalous data values. We point out that providing interpretable explanations for the knowledge mined is a desirable feature of any knowledge discovery technique, though most of the traditional outlier detection methods do not provide explanations. Considering that when dealing with explanations the user could be overwhelmed by a huge amount of redundant information, as a third main contribution, we define a mechanism that allows us to single out outstanding explanations . The proposed technique is knowledge-centric , since we focus on explanation-property pairs and anomalous objects are a by-product of the mined knowledge. This clearly differentiates the proposed approach from traditional outlier detection approaches which instead are object-centric . The experiments highlight that the method is scalable and also able to identify anomalies of a different nature from those detected by traditional techniques." @default.
- W4226346420 created "2022-05-05" @default.
- W4226346420 creator A5055479421 @default.
- W4226346420 creator A5075369704 @default.
- W4226346420 creator A5090380495 @default.
- W4226346420 creator A5091744010 @default.
- W4226346420 date "2022-04-02" @default.
- W4226346420 modified "2023-09-24" @default.
- W4226346420 title "A density estimation approach for detecting and explaining exceptional values in categorical data" @default.
- W4226346420 cites W112228497 @default.
- W4226346420 cites W1530232915 @default.
- W4226346420 cites W1562135275 @default.
- W4226346420 cites W182451476 @default.
- W4226346420 cites W1874523587 @default.
- W4226346420 cites W1966147156 @default.
- W4226346420 cites W1989870481 @default.
- W4226346420 cites W1991758224 @default.
- W4226346420 cites W1993535632 @default.
- W4226346420 cites W1995443851 @default.
- W4226346420 cites W2016907405 @default.
- W4226346420 cites W2020638585 @default.
- W4226346420 cites W2023075593 @default.
- W4226346420 cites W2034035449 @default.
- W4226346420 cites W2061122559 @default.
- W4226346420 cites W2061240327 @default.
- W4226346420 cites W208301935 @default.
- W4226346420 cites W2110784166 @default.
- W4226346420 cites W2117672932 @default.
- W4226346420 cites W2122646361 @default.
- W4226346420 cites W2124536999 @default.
- W4226346420 cites W2144182447 @default.
- W4226346420 cites W2162774438 @default.
- W4226346420 cites W2169930371 @default.
- W4226346420 cites W2170314592 @default.
- W4226346420 cites W2288636546 @default.
- W4226346420 cites W2561521190 @default.
- W4226346420 cites W2604294245 @default.
- W4226346420 cites W2741406507 @default.
- W4226346420 cites W2760451156 @default.
- W4226346420 cites W2767534812 @default.
- W4226346420 cites W2896488239 @default.
- W4226346420 cites W2908751655 @default.
- W4226346420 cites W2920079995 @default.
- W4226346420 cites W2947104347 @default.
- W4226346420 cites W3020873385 @default.
- W4226346420 cites W3135550350 @default.
- W4226346420 cites W4240428965 @default.
- W4226346420 doi "https://doi.org/10.1007/s10489-022-03271-3" @default.
- W4226346420 hasPublicationYear "2022" @default.
- W4226346420 type Work @default.
- W4226346420 citedByCount "0" @default.
- W4226346420 crossrefType "journal-article" @default.
- W4226346420 hasAuthorship W4226346420A5055479421 @default.
- W4226346420 hasAuthorship W4226346420A5075369704 @default.
- W4226346420 hasAuthorship W4226346420A5090380495 @default.
- W4226346420 hasAuthorship W4226346420A5091744010 @default.
- W4226346420 hasBestOaLocation W42263464201 @default.
- W4226346420 hasConcept C105795698 @default.
- W4226346420 hasConcept C111472728 @default.
- W4226346420 hasConcept C119857082 @default.
- W4226346420 hasConcept C124101348 @default.
- W4226346420 hasConcept C12713177 @default.
- W4226346420 hasConcept C138885662 @default.
- W4226346420 hasConcept C153180895 @default.
- W4226346420 hasConcept C154945302 @default.
- W4226346420 hasConcept C185429906 @default.
- W4226346420 hasConcept C189950617 @default.
- W4226346420 hasConcept C2776401178 @default.
- W4226346420 hasConcept C2780009758 @default.
- W4226346420 hasConcept C2781238097 @default.
- W4226346420 hasConcept C33923547 @default.
- W4226346420 hasConcept C41008148 @default.
- W4226346420 hasConcept C41895202 @default.
- W4226346420 hasConcept C5274069 @default.
- W4226346420 hasConcept C71134354 @default.
- W4226346420 hasConcept C739882 @default.
- W4226346420 hasConcept C79337645 @default.
- W4226346420 hasConceptScore W4226346420C105795698 @default.
- W4226346420 hasConceptScore W4226346420C111472728 @default.
- W4226346420 hasConceptScore W4226346420C119857082 @default.
- W4226346420 hasConceptScore W4226346420C124101348 @default.
- W4226346420 hasConceptScore W4226346420C12713177 @default.
- W4226346420 hasConceptScore W4226346420C138885662 @default.
- W4226346420 hasConceptScore W4226346420C153180895 @default.
- W4226346420 hasConceptScore W4226346420C154945302 @default.
- W4226346420 hasConceptScore W4226346420C185429906 @default.
- W4226346420 hasConceptScore W4226346420C189950617 @default.
- W4226346420 hasConceptScore W4226346420C2776401178 @default.
- W4226346420 hasConceptScore W4226346420C2780009758 @default.
- W4226346420 hasConceptScore W4226346420C2781238097 @default.
- W4226346420 hasConceptScore W4226346420C33923547 @default.
- W4226346420 hasConceptScore W4226346420C41008148 @default.
- W4226346420 hasConceptScore W4226346420C41895202 @default.
- W4226346420 hasConceptScore W4226346420C5274069 @default.
- W4226346420 hasConceptScore W4226346420C71134354 @default.
- W4226346420 hasConceptScore W4226346420C739882 @default.
- W4226346420 hasConceptScore W4226346420C79337645 @default.
- W4226346420 hasIssue "15" @default.