Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226354187> ?p ?o ?g. }
- W4226354187 endingPage "284" @default.
- W4226354187 startingPage "270" @default.
- W4226354187 abstract "Shipping carries most of the cargo in international trade, with the fuel cost of ships is the major expense. Much attention has been paid to saving fuel in ship operation. First, to save fuel, an intelligent energy efficiency management system is developed to collect data related to ship energy efficiency. The main engine is the primary fuel-consuming equipment on a ship. It is important to carry out a comprehensive evaluation on the energy efficiency of the main engine. To achieve this goal, an ensemble machine learning approach combining the physics-based empirical model is used to perform a regression analysis on two different indicators. The indicators include the engine shaft power and fuel consumption rate per unit time. Second, the influence of the input features on energy efficiency indicators is analyzed, and some conclusions are drawn. On this basis, a novel trim optimization method based on piecewise regression is suggested, which is helpful to reduce ship resistance. In conclusion, this system can help ship operators to judge whether the main engine and ship are in good working condition and take appropriate measures to save energy for ships." @default.
- W4226354187 created "2022-05-05" @default.
- W4226354187 creator A5025744582 @default.
- W4226354187 creator A5039929632 @default.
- W4226354187 creator A5041682448 @default.
- W4226354187 creator A5067284848 @default.
- W4226354187 date "2023-01-01" @default.
- W4226354187 modified "2023-10-16" @default.
- W4226354187 title "A Data-Driven Intelligent Energy Efficiency Management System for Ships" @default.
- W4226354187 cites W1594031697 @default.
- W4226354187 cites W1973860536 @default.
- W4226354187 cites W1975513190 @default.
- W4226354187 cites W1985235026 @default.
- W4226354187 cites W1994932064 @default.
- W4226354187 cites W2043744672 @default.
- W4226354187 cites W2056132907 @default.
- W4226354187 cites W2063978378 @default.
- W4226354187 cites W2091632079 @default.
- W4226354187 cites W2101927907 @default.
- W4226354187 cites W2113242816 @default.
- W4226354187 cites W2322912969 @default.
- W4226354187 cites W2340855023 @default.
- W4226354187 cites W2483561021 @default.
- W4226354187 cites W2511759311 @default.
- W4226354187 cites W2537315571 @default.
- W4226354187 cites W2548218492 @default.
- W4226354187 cites W2563022518 @default.
- W4226354187 cites W2600791653 @default.
- W4226354187 cites W2611823526 @default.
- W4226354187 cites W2756688990 @default.
- W4226354187 cites W2766830746 @default.
- W4226354187 cites W2802927820 @default.
- W4226354187 cites W2807041002 @default.
- W4226354187 cites W2887015035 @default.
- W4226354187 cites W2892312303 @default.
- W4226354187 cites W2896138087 @default.
- W4226354187 cites W2899643445 @default.
- W4226354187 cites W2947094563 @default.
- W4226354187 cites W2951547513 @default.
- W4226354187 cites W2953174038 @default.
- W4226354187 cites W2968063164 @default.
- W4226354187 cites W2970948886 @default.
- W4226354187 cites W2991613924 @default.
- W4226354187 cites W3019708113 @default.
- W4226354187 cites W3089916988 @default.
- W4226354187 cites W3093933922 @default.
- W4226354187 cites W3102476541 @default.
- W4226354187 cites W3107072925 @default.
- W4226354187 cites W3112047298 @default.
- W4226354187 cites W3131416849 @default.
- W4226354187 cites W3155905652 @default.
- W4226354187 cites W3156473400 @default.
- W4226354187 cites W3190914794 @default.
- W4226354187 cites W3196959636 @default.
- W4226354187 cites W3210315576 @default.
- W4226354187 cites W4212883601 @default.
- W4226354187 cites W4253849230 @default.
- W4226354187 cites W4255455317 @default.
- W4226354187 doi "https://doi.org/10.1109/mits.2022.3153491" @default.
- W4226354187 hasPublicationYear "2023" @default.
- W4226354187 type Work @default.
- W4226354187 citedByCount "3" @default.
- W4226354187 countsByYear W42263541872022 @default.
- W4226354187 countsByYear W42263541872023 @default.
- W4226354187 crossrefType "journal-article" @default.
- W4226354187 hasAuthorship W4226354187A5025744582 @default.
- W4226354187 hasAuthorship W4226354187A5039929632 @default.
- W4226354187 hasAuthorship W4226354187A5041682448 @default.
- W4226354187 hasAuthorship W4226354187A5067284848 @default.
- W4226354187 hasConcept C105795698 @default.
- W4226354187 hasConcept C119599485 @default.
- W4226354187 hasConcept C119857082 @default.
- W4226354187 hasConcept C121332964 @default.
- W4226354187 hasConcept C127413603 @default.
- W4226354187 hasConcept C152877465 @default.
- W4226354187 hasConcept C163258240 @default.
- W4226354187 hasConcept C171146098 @default.
- W4226354187 hasConcept C186370098 @default.
- W4226354187 hasConcept C199104240 @default.
- W4226354187 hasConcept C2742236 @default.
- W4226354187 hasConcept C2776439729 @default.
- W4226354187 hasConcept C2779876931 @default.
- W4226354187 hasConcept C2780165032 @default.
- W4226354187 hasConcept C33923547 @default.
- W4226354187 hasConcept C41008148 @default.
- W4226354187 hasConcept C42475967 @default.
- W4226354187 hasConcept C45882903 @default.
- W4226354187 hasConcept C62520636 @default.
- W4226354187 hasConcept C66938386 @default.
- W4226354187 hasConcept C78519656 @default.
- W4226354187 hasConcept C88611116 @default.
- W4226354187 hasConceptScore W4226354187C105795698 @default.
- W4226354187 hasConceptScore W4226354187C119599485 @default.
- W4226354187 hasConceptScore W4226354187C119857082 @default.
- W4226354187 hasConceptScore W4226354187C121332964 @default.
- W4226354187 hasConceptScore W4226354187C127413603 @default.
- W4226354187 hasConceptScore W4226354187C152877465 @default.
- W4226354187 hasConceptScore W4226354187C163258240 @default.