Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226361848> ?p ?o ?g. }
- W4226361848 endingPage "42120" @default.
- W4226361848 startingPage "42108" @default.
- W4226361848 abstract "In this paper, several model architectures are explored in order to design a high-performing named entity recognition model for addresses which deals with challenges such as diversity, ambiguity and complexity of the address entity. Different types of neural networks are used for training the classifier, including the bidirectional LSTM network in combination with a convolutional layer, a conditional random field layer and different word embeddings. Experiments are conducted on two types of corpora specifically constructed and tagged for tackling this challenge: unstructured and semi-structured datasets. For model evaluation, two versions of the unstructured dataset are used that are tagged differently based on the granularity of address entity: entire address, and address consisting of subparts. For both types of corpora, the best results are achieved on a BiLSTM-CRF architecture model with a single RNN layer trained with BERT embeddings." @default.
- W4226361848 created "2022-05-05" @default.
- W4226361848 creator A5034182739 @default.
- W4226361848 creator A5049555125 @default.
- W4226361848 creator A5052566827 @default.
- W4226361848 creator A5062293489 @default.
- W4226361848 date "2022-01-01" @default.
- W4226361848 modified "2023-10-15" @default.
- W4226361848 title "Named Entity Recognition for Addresses: An Empirical Study" @default.
- W4226361848 cites W1533057952 @default.
- W4226361848 cites W1541757266 @default.
- W4226361848 cites W1982982698 @default.
- W4226361848 cites W1991383860 @default.
- W4226361848 cites W2000363133 @default.
- W4226361848 cites W2020278455 @default.
- W4226361848 cites W2064675550 @default.
- W4226361848 cites W2068882115 @default.
- W4226361848 cites W2070808142 @default.
- W4226361848 cites W2079735306 @default.
- W4226361848 cites W2104706955 @default.
- W4226361848 cites W2107878631 @default.
- W4226361848 cites W2192572088 @default.
- W4226361848 cites W2250539671 @default.
- W4226361848 cites W2296283641 @default.
- W4226361848 cites W2396200542 @default.
- W4226361848 cites W2790570950 @default.
- W4226361848 cites W2962902328 @default.
- W4226361848 cites W2963208801 @default.
- W4226361848 cites W2963625095 @default.
- W4226361848 cites W2979826702 @default.
- W4226361848 cites W3011594683 @default.
- W4226361848 cites W3014936808 @default.
- W4226361848 cites W4245267204 @default.
- W4226361848 doi "https://doi.org/10.1109/access.2022.3167418" @default.
- W4226361848 hasPublicationYear "2022" @default.
- W4226361848 type Work @default.
- W4226361848 citedByCount "2" @default.
- W4226361848 countsByYear W42263618482023 @default.
- W4226361848 crossrefType "journal-article" @default.
- W4226361848 hasAuthorship W4226361848A5034182739 @default.
- W4226361848 hasAuthorship W4226361848A5049555125 @default.
- W4226361848 hasAuthorship W4226361848A5052566827 @default.
- W4226361848 hasAuthorship W4226361848A5062293489 @default.
- W4226361848 hasBestOaLocation W42263618481 @default.
- W4226361848 hasConcept C119857082 @default.
- W4226361848 hasConcept C138885662 @default.
- W4226361848 hasConcept C152565575 @default.
- W4226361848 hasConcept C154945302 @default.
- W4226361848 hasConcept C162324750 @default.
- W4226361848 hasConcept C178790620 @default.
- W4226361848 hasConcept C185592680 @default.
- W4226361848 hasConcept C187736073 @default.
- W4226361848 hasConcept C199360897 @default.
- W4226361848 hasConcept C204321447 @default.
- W4226361848 hasConcept C2779135771 @default.
- W4226361848 hasConcept C2779227376 @default.
- W4226361848 hasConcept C2780451532 @default.
- W4226361848 hasConcept C2780522230 @default.
- W4226361848 hasConcept C41008148 @default.
- W4226361848 hasConcept C41895202 @default.
- W4226361848 hasConcept C81363708 @default.
- W4226361848 hasConcept C90805587 @default.
- W4226361848 hasConcept C95623464 @default.
- W4226361848 hasConceptScore W4226361848C119857082 @default.
- W4226361848 hasConceptScore W4226361848C138885662 @default.
- W4226361848 hasConceptScore W4226361848C152565575 @default.
- W4226361848 hasConceptScore W4226361848C154945302 @default.
- W4226361848 hasConceptScore W4226361848C162324750 @default.
- W4226361848 hasConceptScore W4226361848C178790620 @default.
- W4226361848 hasConceptScore W4226361848C185592680 @default.
- W4226361848 hasConceptScore W4226361848C187736073 @default.
- W4226361848 hasConceptScore W4226361848C199360897 @default.
- W4226361848 hasConceptScore W4226361848C204321447 @default.
- W4226361848 hasConceptScore W4226361848C2779135771 @default.
- W4226361848 hasConceptScore W4226361848C2779227376 @default.
- W4226361848 hasConceptScore W4226361848C2780451532 @default.
- W4226361848 hasConceptScore W4226361848C2780522230 @default.
- W4226361848 hasConceptScore W4226361848C41008148 @default.
- W4226361848 hasConceptScore W4226361848C41895202 @default.
- W4226361848 hasConceptScore W4226361848C81363708 @default.
- W4226361848 hasConceptScore W4226361848C90805587 @default.
- W4226361848 hasConceptScore W4226361848C95623464 @default.
- W4226361848 hasFunder F4320322674 @default.
- W4226361848 hasFunder F4320335322 @default.
- W4226361848 hasLocation W42263618481 @default.
- W4226361848 hasLocation W42263618482 @default.
- W4226361848 hasOpenAccess W4226361848 @default.
- W4226361848 hasPrimaryLocation W42263618481 @default.
- W4226361848 hasRelatedWork W1964783010 @default.
- W4226361848 hasRelatedWork W2061834489 @default.
- W4226361848 hasRelatedWork W2078793151 @default.
- W4226361848 hasRelatedWork W2211396092 @default.
- W4226361848 hasRelatedWork W2399696375 @default.
- W4226361848 hasRelatedWork W2751906762 @default.
- W4226361848 hasRelatedWork W3047727388 @default.
- W4226361848 hasRelatedWork W3088215229 @default.
- W4226361848 hasRelatedWork W4250494529 @default.
- W4226361848 hasRelatedWork W45206245 @default.