Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226367022> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4226367022 endingPage "902" @default.
- W4226367022 startingPage "893" @default.
- W4226367022 abstract "We aimed to validate the accuracy and clinical value of a novel semisupervised learning framework for gross tumor volume (GTV) delineation in nasopharyngeal carcinoma.Two hundred fifty-eight patients with magnetic resonance imaging data sets were divided into training (n = 180), validation (n = 20), and testing (n = 58) cohorts. Ground truth contours of nasopharynx GTV (GTVnx) and node GTV (GTVnd) were manually delineated by 2 experienced radiation oncologists. Twenty percent (n = 36) labeled and 80% (n = 144) unlabeled images were used to train the model, producing model-generated contours for patients from the testing cohort. Nine experienced experts were invited to revise model-generated GTV in 20 randomly selected patients from the testing cohort. Six junior oncologists were asked to delineate GTV in 12 randomly selected patients from the testing cohort without and with the assistance of the model, and revision degrees were compared under these 2 modes. The Dice similarity coefficient (DSC) was used to quantify the accuracy of the model.The model-generated contours showed a high accuracy compared with ground truth contours, with an average DSC score of 0.83 and 0.80 for GTVnx and GTVnd, respectively. There was no significant difference in DSC score between T1-2 and T3-4 patients (0.81 vs 0.83; P = .223), or between N1-2 and N3 patients (0.80 vs 0.79; P = .807). The mean revision degree was lower than 10% in 19 (95%) patients for GTVnx and in 16 (80%) patients for GTVnd. With assistance of the model, the mean revision degree for GTVnx and GTVnd by junior oncologists was reduced from 25.63% to 7.75% and from 21.38% to 14.44%, respectively. Meanwhile, the delineating efficiency was improved by over 60%.The proposed semisupervised learning-based model showed a high accuracy for delineating GTV of nasopharyngeal carcinoma. It was clinically applicable and could assist junior oncologists to improve GTV contouring accuracy and save contouring time." @default.
- W4226367022 created "2022-05-05" @default.
- W4226367022 creator A5000387149 @default.
- W4226367022 creator A5009334041 @default.
- W4226367022 creator A5014860164 @default.
- W4226367022 creator A5029722566 @default.
- W4226367022 creator A5040425613 @default.
- W4226367022 creator A5042799313 @default.
- W4226367022 creator A5051163413 @default.
- W4226367022 creator A5054311081 @default.
- W4226367022 creator A5083648249 @default.
- W4226367022 date "2022-07-01" @default.
- W4226367022 modified "2023-10-14" @default.
- W4226367022 title "Automatic Delineation of Gross Tumor Volume Based on Magnetic Resonance Imaging by Performing a Novel Semisupervised Learning Framework in Nasopharyngeal Carcinoma" @default.
- W4226367022 cites W1582549225 @default.
- W4226367022 cites W1978876559 @default.
- W4226367022 cites W2023660535 @default.
- W4226367022 cites W2037410430 @default.
- W4226367022 cites W2041958560 @default.
- W4226367022 cites W2085589537 @default.
- W4226367022 cites W2103683686 @default.
- W4226367022 cites W2107595635 @default.
- W4226367022 cites W2127890285 @default.
- W4226367022 cites W2151631877 @default.
- W4226367022 cites W2481386872 @default.
- W4226367022 cites W2767362060 @default.
- W4226367022 cites W2777439179 @default.
- W4226367022 cites W2897297550 @default.
- W4226367022 cites W2912886337 @default.
- W4226367022 cites W2922812404 @default.
- W4226367022 cites W2923024056 @default.
- W4226367022 cites W2925142108 @default.
- W4226367022 cites W2961573354 @default.
- W4226367022 cites W2972430989 @default.
- W4226367022 cites W2975885948 @default.
- W4226367022 cites W2982740817 @default.
- W4226367022 cites W3035397014 @default.
- W4226367022 cites W4211017340 @default.
- W4226367022 doi "https://doi.org/10.1016/j.ijrobp.2022.03.031" @default.
- W4226367022 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35381322" @default.
- W4226367022 hasPublicationYear "2022" @default.
- W4226367022 type Work @default.
- W4226367022 citedByCount "6" @default.
- W4226367022 countsByYear W42263670222022 @default.
- W4226367022 countsByYear W42263670222023 @default.
- W4226367022 crossrefType "journal-article" @default.
- W4226367022 hasAuthorship W4226367022A5000387149 @default.
- W4226367022 hasAuthorship W4226367022A5009334041 @default.
- W4226367022 hasAuthorship W4226367022A5014860164 @default.
- W4226367022 hasAuthorship W4226367022A5029722566 @default.
- W4226367022 hasAuthorship W4226367022A5040425613 @default.
- W4226367022 hasAuthorship W4226367022A5042799313 @default.
- W4226367022 hasAuthorship W4226367022A5051163413 @default.
- W4226367022 hasAuthorship W4226367022A5054311081 @default.
- W4226367022 hasAuthorship W4226367022A5083648249 @default.
- W4226367022 hasBestOaLocation W42263670221 @default.
- W4226367022 hasConcept C126322002 @default.
- W4226367022 hasConcept C126838900 @default.
- W4226367022 hasConcept C143409427 @default.
- W4226367022 hasConcept C146849305 @default.
- W4226367022 hasConcept C154945302 @default.
- W4226367022 hasConcept C2778997737 @default.
- W4226367022 hasConcept C2989005 @default.
- W4226367022 hasConcept C41008148 @default.
- W4226367022 hasConcept C509974204 @default.
- W4226367022 hasConcept C71924100 @default.
- W4226367022 hasConcept C72563966 @default.
- W4226367022 hasConceptScore W4226367022C126322002 @default.
- W4226367022 hasConceptScore W4226367022C126838900 @default.
- W4226367022 hasConceptScore W4226367022C143409427 @default.
- W4226367022 hasConceptScore W4226367022C146849305 @default.
- W4226367022 hasConceptScore W4226367022C154945302 @default.
- W4226367022 hasConceptScore W4226367022C2778997737 @default.
- W4226367022 hasConceptScore W4226367022C2989005 @default.
- W4226367022 hasConceptScore W4226367022C41008148 @default.
- W4226367022 hasConceptScore W4226367022C509974204 @default.
- W4226367022 hasConceptScore W4226367022C71924100 @default.
- W4226367022 hasConceptScore W4226367022C72563966 @default.
- W4226367022 hasIssue "4" @default.
- W4226367022 hasLocation W42263670221 @default.
- W4226367022 hasLocation W42263670222 @default.
- W4226367022 hasOpenAccess W4226367022 @default.
- W4226367022 hasPrimaryLocation W42263670221 @default.
- W4226367022 hasRelatedWork W2052574963 @default.
- W4226367022 hasRelatedWork W2375776487 @default.
- W4226367022 hasRelatedWork W2379380436 @default.
- W4226367022 hasRelatedWork W2384038617 @default.
- W4226367022 hasRelatedWork W2603773853 @default.
- W4226367022 hasRelatedWork W2896909802 @default.
- W4226367022 hasRelatedWork W3031836888 @default.
- W4226367022 hasRelatedWork W3032219679 @default.
- W4226367022 hasRelatedWork W3149542298 @default.
- W4226367022 hasRelatedWork W4226367022 @default.
- W4226367022 hasVolume "113" @default.
- W4226367022 isParatext "false" @default.
- W4226367022 isRetracted "false" @default.
- W4226367022 workType "article" @default.