Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226378927> ?p ?o ?g. }
- W4226378927 endingPage "727" @default.
- W4226378927 startingPage "718" @default.
- W4226378927 abstract "This study evaluated how artificial intelligence-based computer-assisted diagnosis (AICAD) for breast ultrasonography (US) influences diagnostic performance and agreement between radiologists with varying experience levels in different workflows.Images of 492 breast lesions (200 malignant and 292 benign masses) in 472 women taken from April 2017 to June 2018 were included. Six radiologists (three inexperienced [<1 year of experience] and three experienced [10-15 years of experience]) individually reviewed US images with and without the aid of AI-CAD, first sequentially and then simultaneously. Diagnostic performance and interobserver agreement were calculated and compared between radiologists and AI-CAD.After implementing AI-CAD, the specificity, positive predictive value (PPV), and accuracy significantly improved, regardless of experience and workflow (all P<0.001, respectively). The overall area under the receiver operating characteristic curve significantly increased in simultaneous reading, but only for inexperienced radiologists. The agreement for Breast Imaging Reporting and Database System (BI-RADS) descriptors generally increased when AI-CAD was used (κ=0.29-0.63 to 0.35-0.73). Inexperienced radiologists tended to concede to AI-CAD results more easily than experienced radiologists, especially in simultaneous reading (P<0.001). The conversion rates for final assessment changes from BI-RADS 2 or 3 to BI-RADS higher than 4a or vice versa were also significantly higher in simultaneous reading than sequential reading (overall, 15.8% and 6.2%, respectively; P<0.001) for both inexperienced and experienced radiologists.Using AI-CAD to interpret breast US improved the specificity, PPV, and accuracy of radiologists regardless of experience level. AI-CAD may work better in simultaneous reading to improve diagnostic performance and agreement between radiologists, especially for inexperienced radiologists." @default.
- W4226378927 created "2022-05-05" @default.
- W4226378927 creator A5006433411 @default.
- W4226378927 creator A5008825476 @default.
- W4226378927 creator A5027381296 @default.
- W4226378927 creator A5042526369 @default.
- W4226378927 creator A5049996494 @default.
- W4226378927 creator A5058293048 @default.
- W4226378927 creator A5064450236 @default.
- W4226378927 creator A5065194895 @default.
- W4226378927 creator A5090076385 @default.
- W4226378927 date "2022-10-01" @default.
- W4226378927 modified "2023-10-18" @default.
- W4226378927 title "Differing benefits of artificial intelligence-based computer-aided diagnosis for breast US according to workflow and experience level" @default.
- W4226378927 cites W2045554152 @default.
- W4226378927 cites W2164777277 @default.
- W4226378927 cites W2253584488 @default.
- W4226378927 cites W2336769953 @default.
- W4226378927 cites W2479186131 @default.
- W4226378927 cites W2739737978 @default.
- W4226378927 cites W2744497773 @default.
- W4226378927 cites W2791384257 @default.
- W4226378927 cites W2891127019 @default.
- W4226378927 cites W2895793770 @default.
- W4226378927 cites W2912427564 @default.
- W4226378927 cites W2922512202 @default.
- W4226378927 cites W2924306747 @default.
- W4226378927 cites W2954621885 @default.
- W4226378927 cites W2971649496 @default.
- W4226378927 cites W2982092517 @default.
- W4226378927 doi "https://doi.org/10.14366/usg.22014" @default.
- W4226378927 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35850498" @default.
- W4226378927 hasPublicationYear "2022" @default.
- W4226378927 type Work @default.
- W4226378927 citedByCount "0" @default.
- W4226378927 crossrefType "journal-article" @default.
- W4226378927 hasAuthorship W4226378927A5006433411 @default.
- W4226378927 hasAuthorship W4226378927A5008825476 @default.
- W4226378927 hasAuthorship W4226378927A5027381296 @default.
- W4226378927 hasAuthorship W4226378927A5042526369 @default.
- W4226378927 hasAuthorship W4226378927A5049996494 @default.
- W4226378927 hasAuthorship W4226378927A5058293048 @default.
- W4226378927 hasAuthorship W4226378927A5064450236 @default.
- W4226378927 hasAuthorship W4226378927A5065194895 @default.
- W4226378927 hasAuthorship W4226378927A5090076385 @default.
- W4226378927 hasBestOaLocation W42263789271 @default.
- W4226378927 hasConcept C121608353 @default.
- W4226378927 hasConcept C126322002 @default.
- W4226378927 hasConcept C126838900 @default.
- W4226378927 hasConcept C127413603 @default.
- W4226378927 hasConcept C154945302 @default.
- W4226378927 hasConcept C177212765 @default.
- W4226378927 hasConcept C17744445 @default.
- W4226378927 hasConcept C194789388 @default.
- W4226378927 hasConcept C19527891 @default.
- W4226378927 hasConcept C199539241 @default.
- W4226378927 hasConcept C199639397 @default.
- W4226378927 hasConcept C2777432617 @default.
- W4226378927 hasConcept C2779549770 @default.
- W4226378927 hasConcept C2780472235 @default.
- W4226378927 hasConcept C2985394991 @default.
- W4226378927 hasConcept C3020132585 @default.
- W4226378927 hasConcept C41008148 @default.
- W4226378927 hasConcept C529618451 @default.
- W4226378927 hasConcept C530470458 @default.
- W4226378927 hasConcept C554936623 @default.
- W4226378927 hasConcept C58471807 @default.
- W4226378927 hasConcept C71924100 @default.
- W4226378927 hasConcept C77088390 @default.
- W4226378927 hasConceptScore W4226378927C121608353 @default.
- W4226378927 hasConceptScore W4226378927C126322002 @default.
- W4226378927 hasConceptScore W4226378927C126838900 @default.
- W4226378927 hasConceptScore W4226378927C127413603 @default.
- W4226378927 hasConceptScore W4226378927C154945302 @default.
- W4226378927 hasConceptScore W4226378927C177212765 @default.
- W4226378927 hasConceptScore W4226378927C17744445 @default.
- W4226378927 hasConceptScore W4226378927C194789388 @default.
- W4226378927 hasConceptScore W4226378927C19527891 @default.
- W4226378927 hasConceptScore W4226378927C199539241 @default.
- W4226378927 hasConceptScore W4226378927C199639397 @default.
- W4226378927 hasConceptScore W4226378927C2777432617 @default.
- W4226378927 hasConceptScore W4226378927C2779549770 @default.
- W4226378927 hasConceptScore W4226378927C2780472235 @default.
- W4226378927 hasConceptScore W4226378927C2985394991 @default.
- W4226378927 hasConceptScore W4226378927C3020132585 @default.
- W4226378927 hasConceptScore W4226378927C41008148 @default.
- W4226378927 hasConceptScore W4226378927C529618451 @default.
- W4226378927 hasConceptScore W4226378927C530470458 @default.
- W4226378927 hasConceptScore W4226378927C554936623 @default.
- W4226378927 hasConceptScore W4226378927C58471807 @default.
- W4226378927 hasConceptScore W4226378927C71924100 @default.
- W4226378927 hasConceptScore W4226378927C77088390 @default.
- W4226378927 hasIssue "4" @default.
- W4226378927 hasLocation W42263789271 @default.
- W4226378927 hasLocation W42263789272 @default.
- W4226378927 hasLocation W42263789273 @default.
- W4226378927 hasLocation W42263789274 @default.
- W4226378927 hasOpenAccess W4226378927 @default.