Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226379033> ?p ?o ?g. }
- W4226379033 endingPage "15" @default.
- W4226379033 startingPage "1" @default.
- W4226379033 abstract "Diseases of internal organs other than the vocal folds can also affect a person's voice. As a result, voice problems are on the rise, even though they are frequently overlooked. According to a recent study, voice pathology detection systems can successfully help the assessment of voice abnormalities and enable the early diagnosis of voice pathology. For instance, in the early identification and diagnosis of voice problems, the automatic system for distinguishing healthy and diseased voices has gotten much attention. As a result, artificial intelligence-assisted voice analysis brings up new possibilities in healthcare. The work was aimed at assessing the utility of several automatic speech signal analysis methods for diagnosing voice disorders and suggesting a strategy for classifying healthy and diseased voices. The proposed framework integrates the efficacy of three voice characteristics: chroma, mel spectrogram, and mel frequency cepstral coefficient (MFCC). We also designed a deep neural network (DNN) capable of learning from the retrieved data and producing a highly accurate voice-based disease prediction model. The study describes a series of studies using the Saarbruecken Voice Database (SVD) to detect abnormal voices. The model was developed and tested using the vowels /a/, /i/, and /u/ pronounced in high, low, and average pitches. We also maintained the continuous sentence audio files collected from SVD to select how well the developed model generalizes to completely new data. The highest accuracy achieved was 77.49%, superior to prior attempts in the same domain. Additionally, the model attains an accuracy of 88.01% by integrating speaker gender information. The designed model trained on selected diseases can also obtain a maximum accuracy of 96.77% (cordectomy × healthy). As a result, the suggested framework is the best fit for the healthcare industry." @default.
- W4226379033 created "2022-05-05" @default.
- W4226379033 creator A5028142707 @default.
- W4226379033 creator A5033923198 @default.
- W4226379033 creator A5056111328 @default.
- W4226379033 creator A5061882302 @default.
- W4226379033 creator A5072084074 @default.
- W4226379033 creator A5073930990 @default.
- W4226379033 date "2022-04-04" @default.
- W4226379033 modified "2023-09-27" @default.
- W4226379033 title "An Analytical Study of Speech Pathology Detection Based on MFCC and Deep Neural Networks" @default.
- W4226379033 cites W131583169 @default.
- W4226379033 cites W1446439765 @default.
- W4226379033 cites W1969120982 @default.
- W4226379033 cites W1974993215 @default.
- W4226379033 cites W2010817634 @default.
- W4226379033 cites W2016912663 @default.
- W4226379033 cites W2037446041 @default.
- W4226379033 cites W2058189943 @default.
- W4226379033 cites W2088897029 @default.
- W4226379033 cites W2125324924 @default.
- W4226379033 cites W2128280309 @default.
- W4226379033 cites W2132025473 @default.
- W4226379033 cites W2132290247 @default.
- W4226379033 cites W2132524366 @default.
- W4226379033 cites W2148154194 @default.
- W4226379033 cites W2155893237 @default.
- W4226379033 cites W2157630368 @default.
- W4226379033 cites W2162109146 @default.
- W4226379033 cites W2165034386 @default.
- W4226379033 cites W2165806037 @default.
- W4226379033 cites W2179209501 @default.
- W4226379033 cites W2293586503 @default.
- W4226379033 cites W2302259492 @default.
- W4226379033 cites W2339666751 @default.
- W4226379033 cites W2410896593 @default.
- W4226379033 cites W2411705124 @default.
- W4226379033 cites W2506429203 @default.
- W4226379033 cites W2524143035 @default.
- W4226379033 cites W254692632 @default.
- W4226379033 cites W2573056035 @default.
- W4226379033 cites W2581209700 @default.
- W4226379033 cites W2609527102 @default.
- W4226379033 cites W2620433108 @default.
- W4226379033 cites W2726644425 @default.
- W4226379033 cites W2733384076 @default.
- W4226379033 cites W2797917356 @default.
- W4226379033 cites W2915149867 @default.
- W4226379033 cites W2962797416 @default.
- W4226379033 cites W3004126958 @default.
- W4226379033 cites W3014330170 @default.
- W4226379033 cites W3031948080 @default.
- W4226379033 cites W3076928706 @default.
- W4226379033 cites W3106436761 @default.
- W4226379033 cites W3125384922 @default.
- W4226379033 cites W3164509420 @default.
- W4226379033 cites W4231039943 @default.
- W4226379033 doi "https://doi.org/10.1155/2022/7814952" @default.
- W4226379033 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35529259" @default.
- W4226379033 hasPublicationYear "2022" @default.
- W4226379033 type Work @default.
- W4226379033 citedByCount "7" @default.
- W4226379033 countsByYear W42263790332022 @default.
- W4226379033 countsByYear W42263790332023 @default.
- W4226379033 crossrefType "journal-article" @default.
- W4226379033 hasAuthorship W4226379033A5028142707 @default.
- W4226379033 hasAuthorship W4226379033A5033923198 @default.
- W4226379033 hasAuthorship W4226379033A5056111328 @default.
- W4226379033 hasAuthorship W4226379033A5061882302 @default.
- W4226379033 hasAuthorship W4226379033A5072084074 @default.
- W4226379033 hasAuthorship W4226379033A5073930990 @default.
- W4226379033 hasBestOaLocation W42263790331 @default.
- W4226379033 hasConcept C116834253 @default.
- W4226379033 hasConcept C151989614 @default.
- W4226379033 hasConcept C153180895 @default.
- W4226379033 hasConcept C154945302 @default.
- W4226379033 hasConcept C182964821 @default.
- W4226379033 hasConcept C2777530160 @default.
- W4226379033 hasConcept C28490314 @default.
- W4226379033 hasConcept C41008148 @default.
- W4226379033 hasConcept C45273575 @default.
- W4226379033 hasConcept C50644808 @default.
- W4226379033 hasConcept C52622490 @default.
- W4226379033 hasConcept C59822182 @default.
- W4226379033 hasConcept C86803240 @default.
- W4226379033 hasConcept C88485024 @default.
- W4226379033 hasConceptScore W4226379033C116834253 @default.
- W4226379033 hasConceptScore W4226379033C151989614 @default.
- W4226379033 hasConceptScore W4226379033C153180895 @default.
- W4226379033 hasConceptScore W4226379033C154945302 @default.
- W4226379033 hasConceptScore W4226379033C182964821 @default.
- W4226379033 hasConceptScore W4226379033C2777530160 @default.
- W4226379033 hasConceptScore W4226379033C28490314 @default.
- W4226379033 hasConceptScore W4226379033C41008148 @default.
- W4226379033 hasConceptScore W4226379033C45273575 @default.
- W4226379033 hasConceptScore W4226379033C50644808 @default.
- W4226379033 hasConceptScore W4226379033C52622490 @default.
- W4226379033 hasConceptScore W4226379033C59822182 @default.