Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226381612> ?p ?o ?g. }
- W4226381612 endingPage "118947" @default.
- W4226381612 startingPage "118947" @default.
- W4226381612 abstract "A key issue in energy flexibility assessment is the lack of a scalable practicable approach to quantify and characterise the flexibility of individual residential buildings from an integrated energy system perspective without the need to use complex simulation models. In this study, this problem is addressed by explicitly quantifying the flexibility of multicomponent thermal and electrical systems commonly found in residential buildings based on an ensemble learning framework that consists of four algorithms, namely, random forests, multilayer perceptron neural network, support vector machine, and extreme gradient boosting. The day-ahead and hour-ahead prediction models developed are periodically updated considering dynamic feature selection based on residential occupancy patterns. The proposed methodology utilises synthetic data obtained from a calibrated white-box model of an all-electric residential building for two indicative occupancy profiles. The energy systems evaluated include a heat pump, a photovoltaic system, and a battery unit. The daily flexibility mappings are acquired by applying hourly independent, and consecutive demand response actions for each energy system considered, using suitable energy flexibility indicators. The results show that the ensemble models developed for each target variable outperform each of the constituent machine learning algorithms. Moreover, the storage capacity resulting from harnessing the heat pump downward flexibility demonstrates accurate accuracy with a coefficient of determination equal to 0.979 and 0.968 for day-ahead predictions and 0.998 and 0.978 for day ahead predictions for the two occupancy profiles considered, respectively. This framework can be used by electricity aggregators to evaluate a building portfolio in an end-user-tailored manner or optimally exploit its energy flexibility considering multi-step predictions to shift electricity usage to off-peak times or times of excess onsite renewable energy generation." @default.
- W4226381612 created "2022-05-05" @default.
- W4226381612 creator A5014451495 @default.
- W4226381612 creator A5020404405 @default.
- W4226381612 creator A5049491974 @default.
- W4226381612 date "2022-06-01" @default.
- W4226381612 modified "2023-10-10" @default.
- W4226381612 title "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems" @default.
- W4226381612 cites W1587228649 @default.
- W4226381612 cites W1619614355 @default.
- W4226381612 cites W1840142836 @default.
- W4226381612 cites W1965345917 @default.
- W4226381612 cites W1977209346 @default.
- W4226381612 cites W2007017967 @default.
- W4226381612 cites W2008084603 @default.
- W4226381612 cites W2014542721 @default.
- W4226381612 cites W2025075589 @default.
- W4226381612 cites W2047143310 @default.
- W4226381612 cites W2051607409 @default.
- W4226381612 cites W2093825590 @default.
- W4226381612 cites W2100805904 @default.
- W4226381612 cites W2172172920 @default.
- W4226381612 cites W2269856308 @default.
- W4226381612 cites W2395697308 @default.
- W4226381612 cites W2462145648 @default.
- W4226381612 cites W2469393612 @default.
- W4226381612 cites W2509344848 @default.
- W4226381612 cites W2549906944 @default.
- W4226381612 cites W2560648492 @default.
- W4226381612 cites W2592453717 @default.
- W4226381612 cites W2608269585 @default.
- W4226381612 cites W2745349846 @default.
- W4226381612 cites W2754029504 @default.
- W4226381612 cites W2764107511 @default.
- W4226381612 cites W2767244494 @default.
- W4226381612 cites W2781966338 @default.
- W4226381612 cites W2792270834 @default.
- W4226381612 cites W2794034951 @default.
- W4226381612 cites W2801749227 @default.
- W4226381612 cites W2802011801 @default.
- W4226381612 cites W2805865870 @default.
- W4226381612 cites W2825371805 @default.
- W4226381612 cites W2889917378 @default.
- W4226381612 cites W2890688913 @default.
- W4226381612 cites W2894319316 @default.
- W4226381612 cites W2900518252 @default.
- W4226381612 cites W2915962888 @default.
- W4226381612 cites W2934904372 @default.
- W4226381612 cites W2946164716 @default.
- W4226381612 cites W2946431786 @default.
- W4226381612 cites W2955823899 @default.
- W4226381612 cites W2969802651 @default.
- W4226381612 cites W2971706201 @default.
- W4226381612 cites W2981189975 @default.
- W4226381612 cites W2986659651 @default.
- W4226381612 cites W2987725885 @default.
- W4226381612 cites W2998310744 @default.
- W4226381612 cites W3002399050 @default.
- W4226381612 cites W3004454690 @default.
- W4226381612 cites W3014199492 @default.
- W4226381612 cites W3021900882 @default.
- W4226381612 cites W3036507077 @default.
- W4226381612 cites W3047806272 @default.
- W4226381612 cites W3080280182 @default.
- W4226381612 cites W3085456884 @default.
- W4226381612 cites W3106496709 @default.
- W4226381612 cites W3111591135 @default.
- W4226381612 cites W3182793133 @default.
- W4226381612 cites W4253973752 @default.
- W4226381612 cites W628510808 @default.
- W4226381612 cites W637287302 @default.
- W4226381612 doi "https://doi.org/10.1016/j.apenergy.2022.118947" @default.
- W4226381612 hasPublicationYear "2022" @default.
- W4226381612 type Work @default.
- W4226381612 citedByCount "9" @default.
- W4226381612 countsByYear W42263816122022 @default.
- W4226381612 countsByYear W42263816122023 @default.
- W4226381612 crossrefType "journal-article" @default.
- W4226381612 hasAuthorship W4226381612A5014451495 @default.
- W4226381612 hasAuthorship W4226381612A5020404405 @default.
- W4226381612 hasAuthorship W4226381612A5049491974 @default.
- W4226381612 hasConcept C105795698 @default.
- W4226381612 hasConcept C119599485 @default.
- W4226381612 hasConcept C119857082 @default.
- W4226381612 hasConcept C119898033 @default.
- W4226381612 hasConcept C127413603 @default.
- W4226381612 hasConcept C154945302 @default.
- W4226381612 hasConcept C160331591 @default.
- W4226381612 hasConcept C169258074 @default.
- W4226381612 hasConcept C170154142 @default.
- W4226381612 hasConcept C206658404 @default.
- W4226381612 hasConcept C2779438525 @default.
- W4226381612 hasConcept C2780598303 @default.
- W4226381612 hasConcept C33923547 @default.
- W4226381612 hasConcept C41008148 @default.
- W4226381612 hasConcept C41291067 @default.
- W4226381612 hasConcept C45942800 @default.
- W4226381612 hasConcept C70153297 @default.