Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226407788> ?p ?o ?g. }
- W4226407788 endingPage "422" @default.
- W4226407788 startingPage "413" @default.
- W4226407788 abstract "We aimed to develop and validate the automatic quantification of coronavirus disease 2019 (COVID-19) pneumonia on computed tomography (CT) images.This retrospective study included 176 chest CT scans of 131 COVID-19 patients from 14 Korean and Chinese institutions from January 23 to March 15, 2020. Two experienced radiologists semiautomatically drew pneumonia masks on CT images to develop the 2D U-Net for segmenting pneumonia. External validation was performed using Japanese (n = 101), Italian (n = 99), Radiopaedia (n = 9), and Chinese data sets (n = 10). The primary measures for the system's performance were correlation coefficients for extent (%) and weight (g) of pneumonia in comparison with visual CT scores or human-derived segmentation. Multivariable logistic regression analyses were performed to evaluate the association of the extent and weight with symptoms in the Japanese data set and composite outcome (respiratory failure and death) in the Spanish data set (n = 115).In the internal test data set, the intraclass correlation coefficients between U-Net outputs and references for the extent and weight were 0.990 and 0.993. In the Japanese data set, the Pearson correlation coefficients between U-Net outputs and visual CT scores were 0.908 and 0.899. In the other external data sets, intraclass correlation coefficients were between 0.949-0.965 (extent) and between 0.978-0.993 (weight). Extent and weight in the top quartile were independently associated with symptoms (odds ratio, 5.523 and 10.561; P = 0.041 and 0.016) and the composite outcome (odds ratio, 9.365 and 7.085; P = 0.021 and P = 0.035).Automatically quantified CT extent and weight of COVID-19 pneumonia were well correlated with human-derived references and independently associated with symptoms and prognosis in multinational external data sets." @default.
- W4226407788 created "2022-05-05" @default.
- W4226407788 creator A5000972679 @default.
- W4226407788 creator A5007992168 @default.
- W4226407788 creator A5008579080 @default.
- W4226407788 creator A5014840805 @default.
- W4226407788 creator A5017987256 @default.
- W4226407788 creator A5025016732 @default.
- W4226407788 creator A5027283754 @default.
- W4226407788 creator A5029864503 @default.
- W4226407788 creator A5030762203 @default.
- W4226407788 creator A5034707680 @default.
- W4226407788 creator A5037220014 @default.
- W4226407788 creator A5038670224 @default.
- W4226407788 creator A5041508602 @default.
- W4226407788 creator A5042802750 @default.
- W4226407788 creator A5048145361 @default.
- W4226407788 creator A5049122506 @default.
- W4226407788 creator A5062878158 @default.
- W4226407788 creator A5071752182 @default.
- W4226407788 creator A5079974353 @default.
- W4226407788 creator A5082379793 @default.
- W4226407788 creator A5090748802 @default.
- W4226407788 creator A5091719802 @default.
- W4226407788 date "2022-04-08" @default.
- W4226407788 modified "2023-10-03" @default.
- W4226407788 title "Deep Learning–Based Automatic CT Quantification of Coronavirus Disease 2019 Pneumonia: An International Collaborative Study" @default.
- W4226407788 cites W1812394418 @default.
- W4226407788 cites W1909740415 @default.
- W4226407788 cites W3004906315 @default.
- W4226407788 cites W3007355693 @default.
- W4226407788 cites W3007964452 @default.
- W4226407788 cites W3008028633 @default.
- W4226407788 cites W3008827533 @default.
- W4226407788 cites W3008985036 @default.
- W4226407788 cites W3009859788 @default.
- W4226407788 cites W3009875419 @default.
- W4226407788 cites W3009885589 @default.
- W4226407788 cites W3010061930 @default.
- W4226407788 cites W3010902474 @default.
- W4226407788 cites W3013130152 @default.
- W4226407788 cites W3013457716 @default.
- W4226407788 cites W3013585706 @default.
- W4226407788 cites W3013824109 @default.
- W4226407788 cites W3016675451 @default.
- W4226407788 cites W3017116151 @default.
- W4226407788 cites W3017621074 @default.
- W4226407788 cites W3025394897 @default.
- W4226407788 cites W3034241008 @default.
- W4226407788 cites W3035151116 @default.
- W4226407788 cites W3047010828 @default.
- W4226407788 cites W3048657539 @default.
- W4226407788 cites W3048705045 @default.
- W4226407788 cites W3093455605 @default.
- W4226407788 cites W3144061366 @default.
- W4226407788 doi "https://doi.org/10.1097/rct.0000000000001303" @default.
- W4226407788 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35405709" @default.
- W4226407788 hasPublicationYear "2022" @default.
- W4226407788 type Work @default.
- W4226407788 citedByCount "3" @default.
- W4226407788 countsByYear W42264077882023 @default.
- W4226407788 crossrefType "journal-article" @default.
- W4226407788 hasAuthorship W4226407788A5000972679 @default.
- W4226407788 hasAuthorship W4226407788A5007992168 @default.
- W4226407788 hasAuthorship W4226407788A5008579080 @default.
- W4226407788 hasAuthorship W4226407788A5014840805 @default.
- W4226407788 hasAuthorship W4226407788A5017987256 @default.
- W4226407788 hasAuthorship W4226407788A5025016732 @default.
- W4226407788 hasAuthorship W4226407788A5027283754 @default.
- W4226407788 hasAuthorship W4226407788A5029864503 @default.
- W4226407788 hasAuthorship W4226407788A5030762203 @default.
- W4226407788 hasAuthorship W4226407788A5034707680 @default.
- W4226407788 hasAuthorship W4226407788A5037220014 @default.
- W4226407788 hasAuthorship W4226407788A5038670224 @default.
- W4226407788 hasAuthorship W4226407788A5041508602 @default.
- W4226407788 hasAuthorship W4226407788A5042802750 @default.
- W4226407788 hasAuthorship W4226407788A5048145361 @default.
- W4226407788 hasAuthorship W4226407788A5049122506 @default.
- W4226407788 hasAuthorship W4226407788A5062878158 @default.
- W4226407788 hasAuthorship W4226407788A5071752182 @default.
- W4226407788 hasAuthorship W4226407788A5079974353 @default.
- W4226407788 hasAuthorship W4226407788A5082379793 @default.
- W4226407788 hasAuthorship W4226407788A5090748802 @default.
- W4226407788 hasAuthorship W4226407788A5091719802 @default.
- W4226407788 hasBestOaLocation W42264077881 @default.
- W4226407788 hasConcept C104709138 @default.
- W4226407788 hasConcept C117220453 @default.
- W4226407788 hasConcept C126322002 @default.
- W4226407788 hasConcept C143095724 @default.
- W4226407788 hasConcept C151956035 @default.
- W4226407788 hasConcept C156957248 @default.
- W4226407788 hasConcept C167135981 @default.
- W4226407788 hasConcept C171606756 @default.
- W4226407788 hasConcept C2524010 @default.
- W4226407788 hasConcept C2777914695 @default.
- W4226407788 hasConcept C33923547 @default.
- W4226407788 hasConcept C44249647 @default.
- W4226407788 hasConcept C68443243 @default.