Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226410762> ?p ?o ?g. }
- W4226410762 endingPage "117176" @default.
- W4226410762 startingPage "117176" @default.
- W4226410762 abstract "The fuzzy time series (FTS) model is widely used to forecast time series data. However, the predicted results of FTS are poor for industrial time series data, especially when data changes rapidly and its volume is enormous. Therefore, a dynamic soft sensor model is proposed based on propositional linear temporal logic (PLTL) with a sliding window. First, the sliding window is used to extract dynamic data. Then the extracted data is modeled by FTS to generate an initial forecasting result. Finally, according to the data in the window, a PLTL formula is generated to describe the trend of the data. The generated formula is used as a formal label of the data in the window to weight the initial forecasting result. The proposed method is verified with the TAIEX data set. Analysis of variance is used to test the significance of selected data sets. The experimental results prove that the new method has good regression forecasting performance. Finally, an example of industrial application is introduced. The experimental results demonstrate the effectiveness of the model for industrial time series data." @default.
- W4226410762 created "2022-05-05" @default.
- W4226410762 creator A5001762132 @default.
- W4226410762 creator A5023508486 @default.
- W4226410762 creator A5029125966 @default.
- W4226410762 creator A5034987034 @default.
- W4226410762 creator A5048492871 @default.
- W4226410762 creator A5083455588 @default.
- W4226410762 date "2022-09-01" @default.
- W4226410762 modified "2023-10-04" @default.
- W4226410762 title "A dynamic soft sensor of industrial fuzzy time series with propositional linear temporal logic" @default.
- W4226410762 cites W1125761772 @default.
- W4226410762 cites W1969574035 @default.
- W4226410762 cites W1984289858 @default.
- W4226410762 cites W1993503008 @default.
- W4226410762 cites W2024850745 @default.
- W4226410762 cites W2026379532 @default.
- W4226410762 cites W2036664528 @default.
- W4226410762 cites W2038759630 @default.
- W4226410762 cites W2046815126 @default.
- W4226410762 cites W2053612364 @default.
- W4226410762 cites W2058414302 @default.
- W4226410762 cites W2074329619 @default.
- W4226410762 cites W2136103712 @default.
- W4226410762 cites W2142407487 @default.
- W4226410762 cites W2168577773 @default.
- W4226410762 cites W2313140552 @default.
- W4226410762 cites W2460943568 @default.
- W4226410762 cites W2501502126 @default.
- W4226410762 cites W2526447135 @default.
- W4226410762 cites W2570822839 @default.
- W4226410762 cites W2765312595 @default.
- W4226410762 cites W2791077645 @default.
- W4226410762 cites W2890763248 @default.
- W4226410762 cites W2913497545 @default.
- W4226410762 cites W2941358638 @default.
- W4226410762 cites W2965049299 @default.
- W4226410762 cites W2971552465 @default.
- W4226410762 cites W2975745452 @default.
- W4226410762 cites W2991089808 @default.
- W4226410762 cites W3004395473 @default.
- W4226410762 cites W3004547709 @default.
- W4226410762 cites W3015790446 @default.
- W4226410762 cites W3026976572 @default.
- W4226410762 cites W3041600832 @default.
- W4226410762 cites W3043706704 @default.
- W4226410762 cites W3131619198 @default.
- W4226410762 cites W3138533684 @default.
- W4226410762 doi "https://doi.org/10.1016/j.eswa.2022.117176" @default.
- W4226410762 hasPublicationYear "2022" @default.
- W4226410762 type Work @default.
- W4226410762 citedByCount "3" @default.
- W4226410762 countsByYear W42264107622023 @default.
- W4226410762 crossrefType "journal-article" @default.
- W4226410762 hasAuthorship W4226410762A5001762132 @default.
- W4226410762 hasAuthorship W4226410762A5023508486 @default.
- W4226410762 hasAuthorship W4226410762A5029125966 @default.
- W4226410762 hasAuthorship W4226410762A5034987034 @default.
- W4226410762 hasAuthorship W4226410762A5048492871 @default.
- W4226410762 hasAuthorship W4226410762A5083455588 @default.
- W4226410762 hasConcept C102392041 @default.
- W4226410762 hasConcept C111919701 @default.
- W4226410762 hasConcept C11413529 @default.
- W4226410762 hasConcept C115575686 @default.
- W4226410762 hasConcept C119857082 @default.
- W4226410762 hasConcept C121955636 @default.
- W4226410762 hasConcept C124101348 @default.
- W4226410762 hasConcept C143724316 @default.
- W4226410762 hasConcept C144133560 @default.
- W4226410762 hasConcept C151406439 @default.
- W4226410762 hasConcept C151730666 @default.
- W4226410762 hasConcept C154945302 @default.
- W4226410762 hasConcept C196083921 @default.
- W4226410762 hasConcept C2778751112 @default.
- W4226410762 hasConcept C41008148 @default.
- W4226410762 hasConcept C4777664 @default.
- W4226410762 hasConcept C58166 @default.
- W4226410762 hasConcept C58489278 @default.
- W4226410762 hasConcept C86803240 @default.
- W4226410762 hasConcept C98045186 @default.
- W4226410762 hasConceptScore W4226410762C102392041 @default.
- W4226410762 hasConceptScore W4226410762C111919701 @default.
- W4226410762 hasConceptScore W4226410762C11413529 @default.
- W4226410762 hasConceptScore W4226410762C115575686 @default.
- W4226410762 hasConceptScore W4226410762C119857082 @default.
- W4226410762 hasConceptScore W4226410762C121955636 @default.
- W4226410762 hasConceptScore W4226410762C124101348 @default.
- W4226410762 hasConceptScore W4226410762C143724316 @default.
- W4226410762 hasConceptScore W4226410762C144133560 @default.
- W4226410762 hasConceptScore W4226410762C151406439 @default.
- W4226410762 hasConceptScore W4226410762C151730666 @default.
- W4226410762 hasConceptScore W4226410762C154945302 @default.
- W4226410762 hasConceptScore W4226410762C196083921 @default.
- W4226410762 hasConceptScore W4226410762C2778751112 @default.
- W4226410762 hasConceptScore W4226410762C41008148 @default.
- W4226410762 hasConceptScore W4226410762C4777664 @default.
- W4226410762 hasConceptScore W4226410762C58166 @default.
- W4226410762 hasConceptScore W4226410762C58489278 @default.