Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226412839> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4226412839 abstract "Given a sequence $S$ of length $n$, a letter-duplicated subsequence is a subsequence of $S$ in the form of $x_1^{d_1}x_2^{d_2}cdots x_k^{d_k}$ with $x_iinSigma$, $x_jneq x_{j+1}$ and $d_igeq 2$ for all $i$ in $[k]$ and $j$ in $[k-1]$. A linear time algorithm for computing the longest letter-duplicated subsequence (LLDS) of $S$ can be easily obtained. In this paper, we focus on two variants of this problem. We first consider the constrained version when $Sigma$ is unbounded, each letter appears in $S$ at least 6 times and all the letters in $Sigma$ must appear in the solution. We show that the problem is NP-hard (a further twist indicates that the problem does not admit any polynomial time approximation). The reduction is from possibly the simplest version of SAT that is NP-complete, $(leq 2,1,leq 3)$-SAT, where each variable appears at most twice positively and exact once negatively, and each clause contains at most three literals and some clauses must contain exactly two literals. (We hope that this technique will serve as a general tool to help us proving the NP-hardness for some more tricky sequence problems involving only one sequence -- much harder than with at least two input sequences, which we apply successfully at the end of the paper on some extra variations of the LLDS problem.) We then show that when each letter appears in $S$ at most 3 times, then the problem admits a factor $1.5-O(frac{1}{n})$ approximation. Finally, we consider the weighted version, where the weight of a block $x_i^{d_i} (d_igeq 2)$ could be any positive function which might not grow with $d_i$. We give a non-trivial $O(n^2)$ time dynamic programming algorithm for this version, i.e., computing an LD-subsequence of $S$ whose weight is maximized." @default.
- W4226412839 created "2022-05-05" @default.
- W4226412839 creator A5010898755 @default.
- W4226412839 creator A5022813032 @default.
- W4226412839 creator A5023816987 @default.
- W4226412839 creator A5070925973 @default.
- W4226412839 date "2021-12-10" @default.
- W4226412839 modified "2023-09-26" @default.
- W4226412839 title "Beyond the Longest Letter-duplicated Subsequence Problem" @default.
- W4226412839 doi "https://doi.org/10.48550/arxiv.2112.05725" @default.
- W4226412839 hasPublicationYear "2021" @default.
- W4226412839 type Work @default.
- W4226412839 citedByCount "0" @default.
- W4226412839 crossrefType "posted-content" @default.
- W4226412839 hasAuthorship W4226412839A5010898755 @default.
- W4226412839 hasAuthorship W4226412839A5022813032 @default.
- W4226412839 hasAuthorship W4226412839A5023816987 @default.
- W4226412839 hasAuthorship W4226412839A5070925973 @default.
- W4226412839 hasBestOaLocation W42264128391 @default.
- W4226412839 hasConcept C111335779 @default.
- W4226412839 hasConcept C11413529 @default.
- W4226412839 hasConcept C114614502 @default.
- W4226412839 hasConcept C118615104 @default.
- W4226412839 hasConcept C120098539 @default.
- W4226412839 hasConcept C121332964 @default.
- W4226412839 hasConcept C134306372 @default.
- W4226412839 hasConcept C137877099 @default.
- W4226412839 hasConcept C170006305 @default.
- W4226412839 hasConcept C2524010 @default.
- W4226412839 hasConcept C2778049214 @default.
- W4226412839 hasConcept C2778112365 @default.
- W4226412839 hasConcept C311688 @default.
- W4226412839 hasConcept C33923547 @default.
- W4226412839 hasConcept C34388435 @default.
- W4226412839 hasConcept C54355233 @default.
- W4226412839 hasConcept C62520636 @default.
- W4226412839 hasConcept C86803240 @default.
- W4226412839 hasConcept C90119067 @default.
- W4226412839 hasConceptScore W4226412839C111335779 @default.
- W4226412839 hasConceptScore W4226412839C11413529 @default.
- W4226412839 hasConceptScore W4226412839C114614502 @default.
- W4226412839 hasConceptScore W4226412839C118615104 @default.
- W4226412839 hasConceptScore W4226412839C120098539 @default.
- W4226412839 hasConceptScore W4226412839C121332964 @default.
- W4226412839 hasConceptScore W4226412839C134306372 @default.
- W4226412839 hasConceptScore W4226412839C137877099 @default.
- W4226412839 hasConceptScore W4226412839C170006305 @default.
- W4226412839 hasConceptScore W4226412839C2524010 @default.
- W4226412839 hasConceptScore W4226412839C2778049214 @default.
- W4226412839 hasConceptScore W4226412839C2778112365 @default.
- W4226412839 hasConceptScore W4226412839C311688 @default.
- W4226412839 hasConceptScore W4226412839C33923547 @default.
- W4226412839 hasConceptScore W4226412839C34388435 @default.
- W4226412839 hasConceptScore W4226412839C54355233 @default.
- W4226412839 hasConceptScore W4226412839C62520636 @default.
- W4226412839 hasConceptScore W4226412839C86803240 @default.
- W4226412839 hasConceptScore W4226412839C90119067 @default.
- W4226412839 hasLocation W42264128391 @default.
- W4226412839 hasOpenAccess W4226412839 @default.
- W4226412839 hasPrimaryLocation W42264128391 @default.
- W4226412839 hasRelatedWork W2035123411 @default.
- W4226412839 hasRelatedWork W2354750595 @default.
- W4226412839 hasRelatedWork W2432338705 @default.
- W4226412839 hasRelatedWork W3193688660 @default.
- W4226412839 hasRelatedWork W4225349735 @default.
- W4226412839 hasRelatedWork W4226412839 @default.
- W4226412839 hasRelatedWork W4285255549 @default.
- W4226412839 hasRelatedWork W4301400600 @default.
- W4226412839 hasRelatedWork W48421712 @default.
- W4226412839 hasRelatedWork W776417157 @default.
- W4226412839 isParatext "false" @default.
- W4226412839 isRetracted "false" @default.
- W4226412839 workType "article" @default.