Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226412964> ?p ?o ?g. }
- W4226412964 endingPage "122" @default.
- W4226412964 startingPage "109" @default.
- W4226412964 abstract "Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electron energy loss spectroscopy (EELS) spectrum images. The performances of UMAP and HDBSCAN are systematically compared to the other clustering analysis approaches used in EELS in the literature using a known synthetic dataset. Better results are found for these new approaches. Furthermore, UMAP and HDBSCAN are showcased in a real experimental dataset from a core–shell nanoparticle of iron and manganese oxides, as well as the triple combination nonnegative matrix factorization–UMAP–HDBSCAN. The results obtained indicate how the complementary use of different combinations may be beneficial in a real-case scenario to attain a complete picture, as different algorithms highlight different aspects of the dataset studied." @default.
- W4226412964 created "2022-05-05" @default.
- W4226412964 creator A5029022628 @default.
- W4226412964 creator A5045026109 @default.
- W4226412964 creator A5078447680 @default.
- W4226412964 date "2021-11-22" @default.
- W4226412964 modified "2023-10-06" @default.
- W4226412964 title "Strategies for EELS Data Analysis. Introducing UMAP and HDBSCAN for Dimensionality Reduction and Clustering" @default.
- W4226412964 cites W1976391658 @default.
- W4226412964 cites W1993569031 @default.
- W4226412964 cites W2001141328 @default.
- W4226412964 cites W2010530217 @default.
- W4226412964 cites W2011430131 @default.
- W4226412964 cites W2016381774 @default.
- W4226412964 cites W2026034143 @default.
- W4226412964 cites W2030644393 @default.
- W4226412964 cites W2038044292 @default.
- W4226412964 cites W2049017883 @default.
- W4226412964 cites W2079601813 @default.
- W4226412964 cites W2085113815 @default.
- W4226412964 cites W2088561639 @default.
- W4226412964 cites W2093344625 @default.
- W4226412964 cites W2101189067 @default.
- W4226412964 cites W2114508388 @default.
- W4226412964 cites W2121572307 @default.
- W4226412964 cites W2121947440 @default.
- W4226412964 cites W2127837300 @default.
- W4226412964 cites W2138153039 @default.
- W4226412964 cites W2141250370 @default.
- W4226412964 cites W2144359569 @default.
- W4226412964 cites W2150593711 @default.
- W4226412964 cites W2160642098 @default.
- W4226412964 cites W2163643825 @default.
- W4226412964 cites W2180566385 @default.
- W4226412964 cites W2230031442 @default.
- W4226412964 cites W2463952291 @default.
- W4226412964 cites W2480429758 @default.
- W4226412964 cites W2511536031 @default.
- W4226412964 cites W2532797789 @default.
- W4226412964 cites W2601243251 @default.
- W4226412964 cites W2612853289 @default.
- W4226412964 cites W2726620708 @default.
- W4226412964 cites W2740924709 @default.
- W4226412964 cites W2745035952 @default.
- W4226412964 cites W2768988890 @default.
- W4226412964 cites W2783895701 @default.
- W4226412964 cites W2899502658 @default.
- W4226412964 cites W2902652978 @default.
- W4226412964 cites W3013547383 @default.
- W4226412964 cites W3046382258 @default.
- W4226412964 cites W3046477201 @default.
- W4226412964 cites W3046806971 @default.
- W4226412964 cites W3087584907 @default.
- W4226412964 cites W3098348322 @default.
- W4226412964 cites W3099514962 @default.
- W4226412964 cites W3103870726 @default.
- W4226412964 cites W3131860561 @default.
- W4226412964 cites W3161200670 @default.
- W4226412964 cites W3202659525 @default.
- W4226412964 cites W4205930639 @default.
- W4226412964 cites W4206519735 @default.
- W4226412964 doi "https://doi.org/10.1017/s1431927621013696" @default.
- W4226412964 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35177136" @default.
- W4226412964 hasPublicationYear "2021" @default.
- W4226412964 type Work @default.
- W4226412964 citedByCount "7" @default.
- W4226412964 countsByYear W42264129642023 @default.
- W4226412964 crossrefType "journal-article" @default.
- W4226412964 hasAuthorship W4226412964A5029022628 @default.
- W4226412964 hasAuthorship W4226412964A5045026109 @default.
- W4226412964 hasAuthorship W4226412964A5078447680 @default.
- W4226412964 hasConcept C11413529 @default.
- W4226412964 hasConcept C121332964 @default.
- W4226412964 hasConcept C152671427 @default.
- W4226412964 hasConcept C153180895 @default.
- W4226412964 hasConcept C154945302 @default.
- W4226412964 hasConcept C158693339 @default.
- W4226412964 hasConcept C27438332 @default.
- W4226412964 hasConcept C41008148 @default.
- W4226412964 hasConcept C42355184 @default.
- W4226412964 hasConcept C57493831 @default.
- W4226412964 hasConcept C62520636 @default.
- W4226412964 hasConcept C70518039 @default.
- W4226412964 hasConcept C73555534 @default.
- W4226412964 hasConceptScore W4226412964C11413529 @default.
- W4226412964 hasConceptScore W4226412964C121332964 @default.
- W4226412964 hasConceptScore W4226412964C152671427 @default.
- W4226412964 hasConceptScore W4226412964C153180895 @default.
- W4226412964 hasConceptScore W4226412964C154945302 @default.
- W4226412964 hasConceptScore W4226412964C158693339 @default.
- W4226412964 hasConceptScore W4226412964C27438332 @default.
- W4226412964 hasConceptScore W4226412964C41008148 @default.
- W4226412964 hasConceptScore W4226412964C42355184 @default.
- W4226412964 hasConceptScore W4226412964C57493831 @default.
- W4226412964 hasConceptScore W4226412964C62520636 @default.
- W4226412964 hasConceptScore W4226412964C70518039 @default.
- W4226412964 hasConceptScore W4226412964C73555534 @default.
- W4226412964 hasFunder F4320321505 @default.