Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226420281> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4226420281 endingPage "113436" @default.
- W4226420281 startingPage "113436" @default.
- W4226420281 abstract "The quality of edible oil is an essential part of food safety which is highly concerned by people. In this study, perturbation Raman spectroscopy combined with deep learning was used to identify antioxidants in edible oils. Convolutional neural network (CNN) and recurrent neural network (RNN) are two classical network structures in deep learning. First of all, we explored the identification effect of antioxidants in edible oils using one-dimensional Raman data combined with one-dimensional CNN and RNN. At the same time, we also compared the identification effect of the data set under a single heating time disturbance. Then two-dimensional correlation spectroscopy combined with a two-dimensional CNN model was used to identify the types of antioxidants. It was found that the final classification accuracy reached 97%, which was nearly 10% higher than the one-dimensional CNN model. This showed that the two-dimensional correlation spectral analysis based on external disturbance can “amplify” the subtle differences in the spectral data. In addition, the traditional chemometric method, partial least squares discriminant analysis (PLS-DA), was used as a control experiment. According to this study, it can be seen that the perturbation spectrum combined with deep learning was feasible in the detection of trace substances in edible oils." @default.
- W4226420281 created "2022-05-05" @default.
- W4226420281 creator A5003459479 @default.
- W4226420281 creator A5017975005 @default.
- W4226420281 creator A5023748379 @default.
- W4226420281 creator A5033640951 @default.
- W4226420281 creator A5058677271 @default.
- W4226420281 creator A5060416973 @default.
- W4226420281 creator A5063525537 @default.
- W4226420281 creator A5091706901 @default.
- W4226420281 date "2022-06-01" @default.
- W4226420281 modified "2023-10-05" @default.
- W4226420281 title "Identification of antioxidants in edible oil by two-dimensional correlation spectroscopy combined with deep learning" @default.
- W4226420281 cites W1600564564 @default.
- W4226420281 cites W2011011466 @default.
- W4226420281 cites W2021708882 @default.
- W4226420281 cites W2043160455 @default.
- W4226420281 cites W2229708048 @default.
- W4226420281 cites W2292339759 @default.
- W4226420281 cites W2442450066 @default.
- W4226420281 cites W2470572701 @default.
- W4226420281 cites W2728634221 @default.
- W4226420281 cites W2739545597 @default.
- W4226420281 cites W2739836671 @default.
- W4226420281 cites W2770854636 @default.
- W4226420281 cites W2915408628 @default.
- W4226420281 cites W2919115771 @default.
- W4226420281 cites W2923462944 @default.
- W4226420281 cites W2946791964 @default.
- W4226420281 cites W2952266823 @default.
- W4226420281 cites W2982482221 @default.
- W4226420281 cites W2998987721 @default.
- W4226420281 cites W3006038974 @default.
- W4226420281 cites W3016208458 @default.
- W4226420281 cites W3029144565 @default.
- W4226420281 cites W3052994319 @default.
- W4226420281 cites W3093611367 @default.
- W4226420281 cites W3105087942 @default.
- W4226420281 doi "https://doi.org/10.1016/j.lwt.2022.113436" @default.
- W4226420281 hasPublicationYear "2022" @default.
- W4226420281 type Work @default.
- W4226420281 citedByCount "3" @default.
- W4226420281 countsByYear W42264202812023 @default.
- W4226420281 crossrefType "journal-article" @default.
- W4226420281 hasAuthorship W4226420281A5003459479 @default.
- W4226420281 hasAuthorship W4226420281A5017975005 @default.
- W4226420281 hasAuthorship W4226420281A5023748379 @default.
- W4226420281 hasAuthorship W4226420281A5033640951 @default.
- W4226420281 hasAuthorship W4226420281A5058677271 @default.
- W4226420281 hasAuthorship W4226420281A5060416973 @default.
- W4226420281 hasAuthorship W4226420281A5063525537 @default.
- W4226420281 hasAuthorship W4226420281A5091706901 @default.
- W4226420281 hasBestOaLocation W42264202811 @default.
- W4226420281 hasConcept C108583219 @default.
- W4226420281 hasConcept C119857082 @default.
- W4226420281 hasConcept C153180895 @default.
- W4226420281 hasConcept C154945302 @default.
- W4226420281 hasConcept C185592680 @default.
- W4226420281 hasConcept C186060115 @default.
- W4226420281 hasConcept C22354355 @default.
- W4226420281 hasConcept C33923547 @default.
- W4226420281 hasConcept C41008148 @default.
- W4226420281 hasConcept C69738355 @default.
- W4226420281 hasConcept C81363708 @default.
- W4226420281 hasConcept C86803240 @default.
- W4226420281 hasConceptScore W4226420281C108583219 @default.
- W4226420281 hasConceptScore W4226420281C119857082 @default.
- W4226420281 hasConceptScore W4226420281C153180895 @default.
- W4226420281 hasConceptScore W4226420281C154945302 @default.
- W4226420281 hasConceptScore W4226420281C185592680 @default.
- W4226420281 hasConceptScore W4226420281C186060115 @default.
- W4226420281 hasConceptScore W4226420281C22354355 @default.
- W4226420281 hasConceptScore W4226420281C33923547 @default.
- W4226420281 hasConceptScore W4226420281C41008148 @default.
- W4226420281 hasConceptScore W4226420281C69738355 @default.
- W4226420281 hasConceptScore W4226420281C81363708 @default.
- W4226420281 hasConceptScore W4226420281C86803240 @default.
- W4226420281 hasLocation W42264202811 @default.
- W4226420281 hasOpenAccess W4226420281 @default.
- W4226420281 hasPrimaryLocation W42264202811 @default.
- W4226420281 hasRelatedWork W2731899572 @default.
- W4226420281 hasRelatedWork W2999805992 @default.
- W4226420281 hasRelatedWork W3116150086 @default.
- W4226420281 hasRelatedWork W3133861977 @default.
- W4226420281 hasRelatedWork W4200173597 @default.
- W4226420281 hasRelatedWork W4223943233 @default.
- W4226420281 hasRelatedWork W4291897433 @default.
- W4226420281 hasRelatedWork W4312417841 @default.
- W4226420281 hasRelatedWork W4321369474 @default.
- W4226420281 hasRelatedWork W4380075502 @default.
- W4226420281 hasVolume "162" @default.
- W4226420281 isParatext "false" @default.
- W4226420281 isRetracted "false" @default.
- W4226420281 workType "article" @default.