Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226420318> ?p ?o ?g. }
- W4226420318 endingPage "10" @default.
- W4226420318 startingPage "1" @default.
- W4226420318 abstract "Traditional chemical measurement methods for the milk composition are not only time-consuming and laborious but also highly polluting. This has necessitated the development of a new method to facilitate fast, easy, and real-time determination of milk composition. This article presents the use of a multichannel infrared spectral sensor and broadband infrared (IR) light source to obtain multiwavelength feature data simultaneously. Furthermore, the gradient-boosted regression tree (GBRT) algorithm was used to develop a method for accurate milk content determination under different conditions. To this end, we developed a near-infrared (NIR) light-strength-acquisition device and accompanying software, compared the effectiveness of different machine learning algorithms, and established an optimal prediction model. Subsequently, the optimal prediction network was selected depending on the milk composition, thereby realizing the highest prediction accuracy. The results obtained in this study revealed that the milk protein and fat contents could be determined from the NIR absorption multispectra based on machine learning of the corresponding samples with coefficients of determination ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$R^{2}$ </tex-math></inline-formula> ) values of 0.949 and 0.996, respectively. The corresponding root-mean-squared estimation errors of the prediction were 0.058 and 0.085, respectively. These experimental results indicate that the proposed milk quality evaluation system can be used to obtain real-time results. Moreover, it is simple, fast, affordable, and environmentally friendly." @default.
- W4226420318 created "2022-05-05" @default.
- W4226420318 creator A5001916762 @default.
- W4226420318 creator A5021451616 @default.
- W4226420318 creator A5044103888 @default.
- W4226420318 creator A5058311901 @default.
- W4226420318 creator A5084202003 @default.
- W4226420318 date "2022-01-01" @default.
- W4226420318 modified "2023-10-06" @default.
- W4226420318 title "Analysis of Protein and Fat in Milk Using Multiwavelength Gradient-Boosted Regression Tree" @default.
- W4226420318 cites W1498436455 @default.
- W4226420318 cites W1587197561 @default.
- W4226420318 cites W1600195273 @default.
- W4226420318 cites W1678356000 @default.
- W4226420318 cites W2003770347 @default.
- W4226420318 cites W2009927598 @default.
- W4226420318 cites W2011083997 @default.
- W4226420318 cites W2060224812 @default.
- W4226420318 cites W2061718218 @default.
- W4226420318 cites W2063135797 @default.
- W4226420318 cites W2065058272 @default.
- W4226420318 cites W2067599421 @default.
- W4226420318 cites W2070263327 @default.
- W4226420318 cites W2085765714 @default.
- W4226420318 cites W2088252378 @default.
- W4226420318 cites W2090725418 @default.
- W4226420318 cites W2093733757 @default.
- W4226420318 cites W2104487864 @default.
- W4226420318 cites W2118895624 @default.
- W4226420318 cites W2140693995 @default.
- W4226420318 cites W2200688712 @default.
- W4226420318 cites W2233073629 @default.
- W4226420318 cites W2295797531 @default.
- W4226420318 cites W2538673440 @default.
- W4226420318 cites W2608394073 @default.
- W4226420318 cites W2808505045 @default.
- W4226420318 cites W2887062723 @default.
- W4226420318 cites W2911964244 @default.
- W4226420318 cites W2922268524 @default.
- W4226420318 cites W2981287782 @default.
- W4226420318 cites W2984960739 @default.
- W4226420318 cites W2990653390 @default.
- W4226420318 cites W2996656160 @default.
- W4226420318 cites W3034204802 @default.
- W4226420318 cites W3037161344 @default.
- W4226420318 cites W3156599272 @default.
- W4226420318 cites W3194949000 @default.
- W4226420318 doi "https://doi.org/10.1109/tim.2022.3165298" @default.
- W4226420318 hasPublicationYear "2022" @default.
- W4226420318 type Work @default.
- W4226420318 citedByCount "1" @default.
- W4226420318 countsByYear W42264203182023 @default.
- W4226420318 crossrefType "journal-article" @default.
- W4226420318 hasAuthorship W4226420318A5001916762 @default.
- W4226420318 hasAuthorship W4226420318A5021451616 @default.
- W4226420318 hasAuthorship W4226420318A5044103888 @default.
- W4226420318 hasAuthorship W4226420318A5058311901 @default.
- W4226420318 hasAuthorship W4226420318A5084202003 @default.
- W4226420318 hasConcept C105795698 @default.
- W4226420318 hasConcept C113174947 @default.
- W4226420318 hasConcept C11413529 @default.
- W4226420318 hasConcept C134306372 @default.
- W4226420318 hasConcept C138885662 @default.
- W4226420318 hasConcept C154945302 @default.
- W4226420318 hasConcept C199360897 @default.
- W4226420318 hasConcept C2777904410 @default.
- W4226420318 hasConcept C33923547 @default.
- W4226420318 hasConcept C40231798 @default.
- W4226420318 hasConcept C41008148 @default.
- W4226420318 hasConcept C41895202 @default.
- W4226420318 hasConcept C83546350 @default.
- W4226420318 hasConceptScore W4226420318C105795698 @default.
- W4226420318 hasConceptScore W4226420318C113174947 @default.
- W4226420318 hasConceptScore W4226420318C11413529 @default.
- W4226420318 hasConceptScore W4226420318C134306372 @default.
- W4226420318 hasConceptScore W4226420318C138885662 @default.
- W4226420318 hasConceptScore W4226420318C154945302 @default.
- W4226420318 hasConceptScore W4226420318C199360897 @default.
- W4226420318 hasConceptScore W4226420318C2777904410 @default.
- W4226420318 hasConceptScore W4226420318C33923547 @default.
- W4226420318 hasConceptScore W4226420318C40231798 @default.
- W4226420318 hasConceptScore W4226420318C41008148 @default.
- W4226420318 hasConceptScore W4226420318C41895202 @default.
- W4226420318 hasConceptScore W4226420318C83546350 @default.
- W4226420318 hasFunder F4320321001 @default.
- W4226420318 hasLocation W42264203181 @default.
- W4226420318 hasOpenAccess W4226420318 @default.
- W4226420318 hasPrimaryLocation W42264203181 @default.
- W4226420318 hasRelatedWork W2037420836 @default.
- W4226420318 hasRelatedWork W2108667088 @default.
- W4226420318 hasRelatedWork W2327064291 @default.
- W4226420318 hasRelatedWork W2351491280 @default.
- W4226420318 hasRelatedWork W2371447506 @default.
- W4226420318 hasRelatedWork W2386767533 @default.
- W4226420318 hasRelatedWork W2475203718 @default.
- W4226420318 hasRelatedWork W2927703260 @default.
- W4226420318 hasRelatedWork W303980170 @default.
- W4226420318 hasRelatedWork W3133453909 @default.