Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226430546> ?p ?o ?g. }
- W4226430546 endingPage "491" @default.
- W4226430546 startingPage "486" @default.
- W4226430546 abstract "Although deep learning (DL) has already become a state-of-the-art technology for various data processing tasks, data security and computational overload problems often arise due to their high data and computational power dependency. To solve this problem, quantum deep learning (QDL) and distributed deep learning (DDL) has emerged to complement existing DL methods. Furthermore, a quantum distributed deep learning (QDDL) technique that combines and maximizes these advantages is getting attention. This paper compares several model structures for QDDL and discusses their possibilities and limitations to leverage QDDL for some representative application scenarios." @default.
- W4226430546 created "2022-05-05" @default.
- W4226430546 creator A5005775728 @default.
- W4226430546 creator A5027907258 @default.
- W4226430546 creator A5039532704 @default.
- W4226430546 creator A5045594590 @default.
- W4226430546 creator A5046472199 @default.
- W4226430546 creator A5064295682 @default.
- W4226430546 creator A5069461436 @default.
- W4226430546 creator A5081315657 @default.
- W4226430546 date "2023-06-01" @default.
- W4226430546 modified "2023-10-09" @default.
- W4226430546 title "Quantum distributed deep learning architectures: Models, discussions, and applications" @default.
- W4226430546 cites W1513904472 @default.
- W4226430546 cites W2008420411 @default.
- W4226430546 cites W2019336689 @default.
- W4226430546 cites W2121213780 @default.
- W4226430546 cites W2526826654 @default.
- W4226430546 cites W2625737531 @default.
- W4226430546 cites W2725502959 @default.
- W4226430546 cites W2781738013 @default.
- W4226430546 cites W2794444783 @default.
- W4226430546 cites W2940740645 @default.
- W4226430546 cites W2963521811 @default.
- W4226430546 cites W2981621709 @default.
- W4226430546 cites W3045093737 @default.
- W4226430546 cites W3097998509 @default.
- W4226430546 cites W3104599990 @default.
- W4226430546 cites W3117786276 @default.
- W4226430546 cites W3125499032 @default.
- W4226430546 cites W3129336662 @default.
- W4226430546 cites W3133137355 @default.
- W4226430546 cites W3134863278 @default.
- W4226430546 cites W3156286751 @default.
- W4226430546 cites W3169143252 @default.
- W4226430546 cites W3196335237 @default.
- W4226430546 cites W3198751165 @default.
- W4226430546 cites W3214044651 @default.
- W4226430546 cites W4225729124 @default.
- W4226430546 cites W4312694312 @default.
- W4226430546 doi "https://doi.org/10.1016/j.icte.2022.08.004" @default.
- W4226430546 hasPublicationYear "2023" @default.
- W4226430546 type Work @default.
- W4226430546 citedByCount "4" @default.
- W4226430546 countsByYear W42264305462023 @default.
- W4226430546 crossrefType "journal-article" @default.
- W4226430546 hasAuthorship W4226430546A5005775728 @default.
- W4226430546 hasAuthorship W4226430546A5027907258 @default.
- W4226430546 hasAuthorship W4226430546A5039532704 @default.
- W4226430546 hasAuthorship W4226430546A5045594590 @default.
- W4226430546 hasAuthorship W4226430546A5046472199 @default.
- W4226430546 hasAuthorship W4226430546A5064295682 @default.
- W4226430546 hasAuthorship W4226430546A5069461436 @default.
- W4226430546 hasAuthorship W4226430546A5081315657 @default.
- W4226430546 hasBestOaLocation W42264305461 @default.
- W4226430546 hasConcept C104317684 @default.
- W4226430546 hasConcept C108583219 @default.
- W4226430546 hasConcept C112313634 @default.
- W4226430546 hasConcept C119857082 @default.
- W4226430546 hasConcept C120314980 @default.
- W4226430546 hasConcept C127716648 @default.
- W4226430546 hasConcept C153083717 @default.
- W4226430546 hasConcept C154945302 @default.
- W4226430546 hasConcept C185592680 @default.
- W4226430546 hasConcept C188082640 @default.
- W4226430546 hasConcept C2522767166 @default.
- W4226430546 hasConcept C41008148 @default.
- W4226430546 hasConcept C55493867 @default.
- W4226430546 hasConcept C80444323 @default.
- W4226430546 hasConceptScore W4226430546C104317684 @default.
- W4226430546 hasConceptScore W4226430546C108583219 @default.
- W4226430546 hasConceptScore W4226430546C112313634 @default.
- W4226430546 hasConceptScore W4226430546C119857082 @default.
- W4226430546 hasConceptScore W4226430546C120314980 @default.
- W4226430546 hasConceptScore W4226430546C127716648 @default.
- W4226430546 hasConceptScore W4226430546C153083717 @default.
- W4226430546 hasConceptScore W4226430546C154945302 @default.
- W4226430546 hasConceptScore W4226430546C185592680 @default.
- W4226430546 hasConceptScore W4226430546C188082640 @default.
- W4226430546 hasConceptScore W4226430546C2522767166 @default.
- W4226430546 hasConceptScore W4226430546C41008148 @default.
- W4226430546 hasConceptScore W4226430546C55493867 @default.
- W4226430546 hasConceptScore W4226430546C80444323 @default.
- W4226430546 hasFunder F4320322030 @default.
- W4226430546 hasFunder F4320324891 @default.
- W4226430546 hasIssue "3" @default.
- W4226430546 hasLocation W42264305461 @default.
- W4226430546 hasLocation W42264305462 @default.
- W4226430546 hasOpenAccess W4226430546 @default.
- W4226430546 hasPrimaryLocation W42264305461 @default.
- W4226430546 hasRelatedWork W2795261237 @default.
- W4226430546 hasRelatedWork W3014300295 @default.
- W4226430546 hasRelatedWork W3164822677 @default.
- W4226430546 hasRelatedWork W4223943233 @default.
- W4226430546 hasRelatedWork W4225161397 @default.
- W4226430546 hasRelatedWork W4312200629 @default.
- W4226430546 hasRelatedWork W4360585206 @default.
- W4226430546 hasRelatedWork W4364306694 @default.