Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226487405> ?p ?o ?g. }
- W4226487405 endingPage "59" @default.
- W4226487405 startingPage "52" @default.
- W4226487405 abstract "Context and motivation: Advances in Machine Learning (ML) and Deep Learning (DL) technologies have transformed the field of Natural Language Processing (NLP), making NLP more practical and accessible. Motivated by these exciting developments, Requirements Engineering (RE) researchers have been experimenting ML/DL based approaches for a range of RE tasks, such as requirements classification, requirements tracing, ambiguity detection, and modelling. Question/problem: Most of today’s ML/DL approaches are based on supervised learning techniques, meaning that they need to be trained using annotated datasets to learn how to assign a class label to examples from an application domain. This requirement poses an enormous challenge to RE researchers, as the lack of requirements datasets in general and annotated datasets in particular, makes it difficult for them to fully exploit the benefit of the advanced ML/DL technologies. Principal ideas/results: To address this challenge, this paper proposes a novel approach that employs the Zero-Shot Learning (ZSL) technique to perform requirements classification. We build several classification models using ZSL. We focus on the classification task because many RE tasks can be solved as classification problems by a large number of available ML/DL methods. In this preliminary study, we demonstrate our approach by classifying non-functional requirements (NFRs) into two categories: Usability and Security. ZSL supports learning without domain-specific training data, thus solving the lack of annotated datasets typical of RE. The study shows that our approach achieves an average of 82% recall and F-score. Contribution: This study demonstrates the potential of ZSL for requirements classification. The promising results of this study pave the way for further investigations and large-scale studies. An important implication is that it is possible to have very little or no training data to perform requirements classification. The proposed approach thus contributes to the solution of the long-standing problem of data shortage in RE." @default.
- W4226487405 created "2022-05-05" @default.
- W4226487405 creator A5025287610 @default.
- W4226487405 creator A5040962321 @default.
- W4226487405 creator A5066209139 @default.
- W4226487405 creator A5086408885 @default.
- W4226487405 date "2022-01-01" @default.
- W4226487405 modified "2023-10-02" @default.
- W4226487405 title "A Zero-Shot Learning Approach to Classifying Requirements: A Preliminary Study" @default.
- W4226487405 cites W2165698076 @default.
- W4226487405 cites W2362569215 @default.
- W4226487405 cites W2395579298 @default.
- W4226487405 cites W2758253540 @default.
- W4226487405 cites W2768339170 @default.
- W4226487405 cites W2953958347 @default.
- W4226487405 cites W2970200208 @default.
- W4226487405 cites W2970641574 @default.
- W4226487405 cites W2979826702 @default.
- W4226487405 cites W2993303751 @default.
- W4226487405 cites W3091973425 @default.
- W4226487405 cites W3153389197 @default.
- W4226487405 cites W3174544005 @default.
- W4226487405 cites W3194114348 @default.
- W4226487405 doi "https://doi.org/10.1007/978-3-030-98464-9_5" @default.
- W4226487405 hasPublicationYear "2022" @default.
- W4226487405 type Work @default.
- W4226487405 citedByCount "3" @default.
- W4226487405 countsByYear W42264874052022 @default.
- W4226487405 countsByYear W42264874052023 @default.
- W4226487405 crossrefType "book-chapter" @default.
- W4226487405 hasAuthorship W4226487405A5025287610 @default.
- W4226487405 hasAuthorship W4226487405A5040962321 @default.
- W4226487405 hasAuthorship W4226487405A5066209139 @default.
- W4226487405 hasAuthorship W4226487405A5086408885 @default.
- W4226487405 hasConcept C107457646 @default.
- W4226487405 hasConcept C108583219 @default.
- W4226487405 hasConcept C111919701 @default.
- W4226487405 hasConcept C119857082 @default.
- W4226487405 hasConcept C134306372 @default.
- W4226487405 hasConcept C138673069 @default.
- W4226487405 hasConcept C151730666 @default.
- W4226487405 hasConcept C154945302 @default.
- W4226487405 hasConcept C162324750 @default.
- W4226487405 hasConcept C165696696 @default.
- W4226487405 hasConcept C170130773 @default.
- W4226487405 hasConcept C187736073 @default.
- W4226487405 hasConcept C199360897 @default.
- W4226487405 hasConcept C202444582 @default.
- W4226487405 hasConcept C2777904410 @default.
- W4226487405 hasConcept C2779343474 @default.
- W4226487405 hasConcept C2780451532 @default.
- W4226487405 hasConcept C2780522230 @default.
- W4226487405 hasConcept C33923547 @default.
- W4226487405 hasConcept C36503486 @default.
- W4226487405 hasConcept C38652104 @default.
- W4226487405 hasConcept C41008148 @default.
- W4226487405 hasConcept C6604083 @default.
- W4226487405 hasConcept C86803240 @default.
- W4226487405 hasConcept C9652623 @default.
- W4226487405 hasConceptScore W4226487405C107457646 @default.
- W4226487405 hasConceptScore W4226487405C108583219 @default.
- W4226487405 hasConceptScore W4226487405C111919701 @default.
- W4226487405 hasConceptScore W4226487405C119857082 @default.
- W4226487405 hasConceptScore W4226487405C134306372 @default.
- W4226487405 hasConceptScore W4226487405C138673069 @default.
- W4226487405 hasConceptScore W4226487405C151730666 @default.
- W4226487405 hasConceptScore W4226487405C154945302 @default.
- W4226487405 hasConceptScore W4226487405C162324750 @default.
- W4226487405 hasConceptScore W4226487405C165696696 @default.
- W4226487405 hasConceptScore W4226487405C170130773 @default.
- W4226487405 hasConceptScore W4226487405C187736073 @default.
- W4226487405 hasConceptScore W4226487405C199360897 @default.
- W4226487405 hasConceptScore W4226487405C202444582 @default.
- W4226487405 hasConceptScore W4226487405C2777904410 @default.
- W4226487405 hasConceptScore W4226487405C2779343474 @default.
- W4226487405 hasConceptScore W4226487405C2780451532 @default.
- W4226487405 hasConceptScore W4226487405C2780522230 @default.
- W4226487405 hasConceptScore W4226487405C33923547 @default.
- W4226487405 hasConceptScore W4226487405C36503486 @default.
- W4226487405 hasConceptScore W4226487405C38652104 @default.
- W4226487405 hasConceptScore W4226487405C41008148 @default.
- W4226487405 hasConceptScore W4226487405C6604083 @default.
- W4226487405 hasConceptScore W4226487405C86803240 @default.
- W4226487405 hasConceptScore W4226487405C9652623 @default.
- W4226487405 hasLocation W42264874051 @default.
- W4226487405 hasOpenAccess W4226487405 @default.
- W4226487405 hasPrimaryLocation W42264874051 @default.
- W4226487405 hasRelatedWork W4223943233 @default.
- W4226487405 hasRelatedWork W4225161397 @default.
- W4226487405 hasRelatedWork W4309045103 @default.
- W4226487405 hasRelatedWork W4312200629 @default.
- W4226487405 hasRelatedWork W4312831135 @default.
- W4226487405 hasRelatedWork W4360585206 @default.
- W4226487405 hasRelatedWork W4364306694 @default.
- W4226487405 hasRelatedWork W4379255972 @default.
- W4226487405 hasRelatedWork W4380086463 @default.
- W4226487405 hasRelatedWork W4383955378 @default.
- W4226487405 isParatext "false" @default.