Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226502125> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4226502125 endingPage "12210" @default.
- W4226502125 startingPage "12197" @default.
- W4226502125 abstract "The lack of an objective method to evaluate the eardrum is a critical barrier to an accurate diagnosis. Eardrum images are classified into normal or abnormal categories with machine learning techniques. If the input is an otoscopy video, a traditional approach requires great effort and expertise to manually determine the representative frame(s). In this paper, we propose a novel deep learning-based method, called OtoXNet, which automatically learns features for eardrum classification from otoscope video clips. We utilized multiple composite image generation methods to construct a highly representative version of otoscopy videos to diagnose three major eardrum diseases, i.e., otitis media with effusion, eardrum perforation, and tympanosclerosis versus normal (healthy). We compared the performance of OtoXNet against methods that either use a single composite image or a keyframe selected by an experienced human. Our dataset consists of 394 otoscopy videos from 312 patients and 765 composite images before augmentation. OtoXNet with multiple composite images achieved 84.8% class-weighted accuracy with 3.8% standard deviation, whereas with the human-selected keyframes and single composite images, the accuracies were respectively, 81.8% ± 5.0% and 80.1% ± 4.8% on multi-class eardrum video classification task using an eightfold cross-validation scheme. A paired t-test shows that there is a statistically significant difference (p-value of 1.3 × 10–2) between the performance values of OtoXNet (multiple composite images) and the human-selected keyframes. Contrarily, the difference in means of keyframe and single composites was not significant (p = 5.49 × 10–1). OtoXNet surpasses the baseline approaches in qualitative results. The use of multiple composite images in analyzing eardrum abnormalities is advantageous compared to using single composite images or manual keyframe selection." @default.
- W4226502125 created "2022-05-05" @default.
- W4226502125 creator A5028601109 @default.
- W4226502125 creator A5034159054 @default.
- W4226502125 creator A5077316017 @default.
- W4226502125 creator A5080655513 @default.
- W4226502125 creator A5088897592 @default.
- W4226502125 date "2022-03-28" @default.
- W4226502125 modified "2023-10-16" @default.
- W4226502125 title "OtoXNet—automated identification of eardrum diseases from otoscope videos: a deep learning study for video-representing images" @default.
- W4226502125 cites W1677409904 @default.
- W4226502125 cites W1861492603 @default.
- W4226502125 cites W1941620283 @default.
- W4226502125 cites W1973054923 @default.
- W4226502125 cites W1984020445 @default.
- W4226502125 cites W1986614398 @default.
- W4226502125 cites W1987786949 @default.
- W4226502125 cites W2052252099 @default.
- W4226502125 cites W2054153752 @default.
- W4226502125 cites W2099983742 @default.
- W4226502125 cites W2108598243 @default.
- W4226502125 cites W2113350594 @default.
- W4226502125 cites W2118881108 @default.
- W4226502125 cites W2150500774 @default.
- W4226502125 cites W2151631165 @default.
- W4226502125 cites W2160503775 @default.
- W4226502125 cites W2165698076 @default.
- W4226502125 cites W2169753906 @default.
- W4226502125 cites W2183341477 @default.
- W4226502125 cites W2194775991 @default.
- W4226502125 cites W2257166582 @default.
- W4226502125 cites W2415432579 @default.
- W4226502125 cites W2529272619 @default.
- W4226502125 cites W2593892063 @default.
- W4226502125 cites W2613204904 @default.
- W4226502125 cites W2790468440 @default.
- W4226502125 cites W2796854304 @default.
- W4226502125 cites W2884017319 @default.
- W4226502125 cites W2909594855 @default.
- W4226502125 cites W2943770994 @default.
- W4226502125 cites W2994949090 @default.
- W4226502125 cites W3011067816 @default.
- W4226502125 cites W3012103507 @default.
- W4226502125 cites W3025651738 @default.
- W4226502125 cites W3066638399 @default.
- W4226502125 cites W3080682565 @default.
- W4226502125 cites W3123499678 @default.
- W4226502125 cites W3130613657 @default.
- W4226502125 cites W3131839858 @default.
- W4226502125 cites W49700977 @default.
- W4226502125 doi "https://doi.org/10.1007/s00521-022-07107-6" @default.
- W4226502125 hasPublicationYear "2022" @default.
- W4226502125 type Work @default.
- W4226502125 citedByCount "2" @default.
- W4226502125 countsByYear W42265021252023 @default.
- W4226502125 crossrefType "journal-article" @default.
- W4226502125 hasAuthorship W4226502125A5028601109 @default.
- W4226502125 hasAuthorship W4226502125A5034159054 @default.
- W4226502125 hasAuthorship W4226502125A5077316017 @default.
- W4226502125 hasAuthorship W4226502125A5080655513 @default.
- W4226502125 hasAuthorship W4226502125A5088897592 @default.
- W4226502125 hasBestOaLocation W42265021252 @default.
- W4226502125 hasConcept C126838900 @default.
- W4226502125 hasConcept C153180895 @default.
- W4226502125 hasConcept C154945302 @default.
- W4226502125 hasConcept C2781404453 @default.
- W4226502125 hasConcept C31972630 @default.
- W4226502125 hasConcept C41008148 @default.
- W4226502125 hasConcept C71924100 @default.
- W4226502125 hasConceptScore W4226502125C126838900 @default.
- W4226502125 hasConceptScore W4226502125C153180895 @default.
- W4226502125 hasConceptScore W4226502125C154945302 @default.
- W4226502125 hasConceptScore W4226502125C2781404453 @default.
- W4226502125 hasConceptScore W4226502125C31972630 @default.
- W4226502125 hasConceptScore W4226502125C41008148 @default.
- W4226502125 hasConceptScore W4226502125C71924100 @default.
- W4226502125 hasFunder F4320337352 @default.
- W4226502125 hasIssue "14" @default.
- W4226502125 hasLocation W42265021251 @default.
- W4226502125 hasLocation W42265021252 @default.
- W4226502125 hasOpenAccess W4226502125 @default.
- W4226502125 hasPrimaryLocation W42265021251 @default.
- W4226502125 hasRelatedWork W1891287906 @default.
- W4226502125 hasRelatedWork W1969923398 @default.
- W4226502125 hasRelatedWork W2036807459 @default.
- W4226502125 hasRelatedWork W2058170566 @default.
- W4226502125 hasRelatedWork W2166024367 @default.
- W4226502125 hasRelatedWork W2229312674 @default.
- W4226502125 hasRelatedWork W2755342338 @default.
- W4226502125 hasRelatedWork W2772917594 @default.
- W4226502125 hasRelatedWork W2775347418 @default.
- W4226502125 hasRelatedWork W3116076068 @default.
- W4226502125 hasVolume "34" @default.
- W4226502125 isParatext "false" @default.
- W4226502125 isRetracted "false" @default.
- W4226502125 workType "article" @default.