Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226507777> ?p ?o ?g. }
- W4226507777 endingPage "4891" @default.
- W4226507777 startingPage "4881" @default.
- W4226507777 abstract "In this article, sparse nonnegative matrix factorization (SNMF) is formulated as a mixed-integer bicriteria optimization problem for minimizing matrix factorization errors and maximizing factorized matrix sparsity based on an exact binary representation of l0 matrix norm. The binary constraints of the problem are then equivalently replaced with bilinear constraints to convert the problem to a biconvex problem. The reformulated biconvex problem is finally solved by using a two-timescale duplex neurodynamic approach consisting of two recurrent neural networks (RNNs) operating collaboratively at two timescales. A Gaussian score (GS) is defined as to integrate the bicriteria of factorization errors and sparsity of resulting matrices. The performance of the proposed neurodynamic approach is substantiated in terms of low factorization errors, high sparsity, and high GS on four benchmark datasets." @default.
- W4226507777 created "2022-05-05" @default.
- W4226507777 creator A5018676117 @default.
- W4226507777 creator A5044406254 @default.
- W4226507777 creator A5057428910 @default.
- W4226507777 date "2023-08-01" @default.
- W4226507777 modified "2023-10-16" @default.
- W4226507777 title "Bicriteria Sparse Nonnegative Matrix Factorization via Two-Timescale Duplex Neurodynamic Optimization" @default.
- W4226507777 cites W133838137 @default.
- W4226507777 cites W1568057090 @default.
- W4226507777 cites W1597286183 @default.
- W4226507777 cites W1902027874 @default.
- W4226507777 cites W1922858971 @default.
- W4226507777 cites W1964590153 @default.
- W4226507777 cites W1968094122 @default.
- W4226507777 cites W1983001233 @default.
- W4226507777 cites W2005122474 @default.
- W4226507777 cites W2010526455 @default.
- W4226507777 cites W2026034143 @default.
- W4226507777 cites W2040734884 @default.
- W4226507777 cites W2072026894 @default.
- W4226507777 cites W2078537003 @default.
- W4226507777 cites W2091334405 @default.
- W4226507777 cites W2092423825 @default.
- W4226507777 cites W2096524645 @default.
- W4226507777 cites W2102536337 @default.
- W4226507777 cites W2107236786 @default.
- W4226507777 cites W2107383972 @default.
- W4226507777 cites W2110096996 @default.
- W4226507777 cites W2111031731 @default.
- W4226507777 cites W2113359929 @default.
- W4226507777 cites W2116216716 @default.
- W4226507777 cites W2117286520 @default.
- W4226507777 cites W2127824344 @default.
- W4226507777 cites W2130789253 @default.
- W4226507777 cites W2141725066 @default.
- W4226507777 cites W2142519358 @default.
- W4226507777 cites W2142584058 @default.
- W4226507777 cites W2144359569 @default.
- W4226507777 cites W2147060498 @default.
- W4226507777 cites W2152555602 @default.
- W4226507777 cites W2155151262 @default.
- W4226507777 cites W2167219836 @default.
- W4226507777 cites W2235020008 @default.
- W4226507777 cites W2243370844 @default.
- W4226507777 cites W2284760372 @default.
- W4226507777 cites W2316653816 @default.
- W4226507777 cites W2345063733 @default.
- W4226507777 cites W2492010876 @default.
- W4226507777 cites W2494395359 @default.
- W4226507777 cites W2515014135 @default.
- W4226507777 cites W2584604366 @default.
- W4226507777 cites W2606849927 @default.
- W4226507777 cites W2611497108 @default.
- W4226507777 cites W2791926423 @default.
- W4226507777 cites W2804454015 @default.
- W4226507777 cites W2805046565 @default.
- W4226507777 cites W2906898454 @default.
- W4226507777 cites W2915522415 @default.
- W4226507777 cites W2917796591 @default.
- W4226507777 cites W2952213188 @default.
- W4226507777 cites W2956107014 @default.
- W4226507777 cites W2974257309 @default.
- W4226507777 cites W2980820220 @default.
- W4226507777 cites W2997457453 @default.
- W4226507777 cites W3009906994 @default.
- W4226507777 cites W3034010340 @default.
- W4226507777 cites W3035015656 @default.
- W4226507777 cites W3082800695 @default.
- W4226507777 cites W3124053204 @default.
- W4226507777 cites W3208550483 @default.
- W4226507777 cites W4248996067 @default.
- W4226507777 doi "https://doi.org/10.1109/tnnls.2021.3125457" @default.
- W4226507777 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34788223" @default.
- W4226507777 hasPublicationYear "2023" @default.
- W4226507777 type Work @default.
- W4226507777 citedByCount "20" @default.
- W4226507777 countsByYear W42265077772022 @default.
- W4226507777 countsByYear W42265077772023 @default.
- W4226507777 crossrefType "journal-article" @default.
- W4226507777 hasAuthorship W4226507777A5018676117 @default.
- W4226507777 hasAuthorship W4226507777A5044406254 @default.
- W4226507777 hasAuthorship W4226507777A5057428910 @default.
- W4226507777 hasBestOaLocation W42265077771 @default.
- W4226507777 hasConcept C106487976 @default.
- W4226507777 hasConcept C11413529 @default.
- W4226507777 hasConcept C121332964 @default.
- W4226507777 hasConcept C126255220 @default.
- W4226507777 hasConcept C13280743 @default.
- W4226507777 hasConcept C137836250 @default.
- W4226507777 hasConcept C152671427 @default.
- W4226507777 hasConcept C158693339 @default.
- W4226507777 hasConcept C159985019 @default.
- W4226507777 hasConcept C163716315 @default.
- W4226507777 hasConcept C185798385 @default.
- W4226507777 hasConcept C187834632 @default.
- W4226507777 hasConcept C192562407 @default.
- W4226507777 hasConcept C205649164 @default.