Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226513839> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4226513839 abstract "Automated flower detection and control is important to crop production and precision agriculture. Some computer vision methods have been proposed for flower detection, but their performances are not satisfactory on platforms with limited computing ability such as mobile and embedded devices, and thus not suitable for field applications. Herein we demonstrate two de novo approaches that can precisely detect the flowers of two bioenergy crops (potatoes and sweet potatoes) and can distinguish them from similar flowers of relative species (eggplants and Ipomoea triloba) on mobile devices. In this work, a custom dataset containing 495 manually labelled images is constructed for training and testing, and the latest state-of-the-art object detection model, YOLOv4, as well as its lightweight version, YOLOv4-tiny, are selected as the flower detection models. Some other milestone object detection models including YOLOv3, YOLOv3-tiny, SSD and Faster-RCNN are chosen as benchmarks for performance comparison. The comparative experiment results indicate that the retrained YOLOv4 model achieves a considerable high mean average precision (mAP= 91%;) but a slower inference speed (FPS) on a mobile device, while the retrained YOLOv4-tiny has a lower mAP of 87%; but reach a higher FPS of 9 on a mobile device. Two mobile applications are then developed by directly deploying YOLOv4-tiny model on a mobile app and by deploying YOLOv4 on a web API, respectively. The testing experiments indicate that both applications can not only achieve real-time and accurate detection, but also reduce computation burdens on mobile devices." @default.
- W4226513839 created "2022-05-05" @default.
- W4226513839 creator A5014082065 @default.
- W4226513839 creator A5059027322 @default.
- W4226513839 date "2021-12-01" @default.
- W4226513839 modified "2023-09-28" @default.
- W4226513839 title "Applications of Mobile Machine Learning for Detecting Bio-energy Crops Flowers" @default.
- W4226513839 cites W2047299675 @default.
- W4226513839 cites W2062397612 @default.
- W4226513839 cites W2102605133 @default.
- W4226513839 cites W2109255472 @default.
- W4226513839 cites W2110015572 @default.
- W4226513839 cites W2129492014 @default.
- W4226513839 cites W2151103935 @default.
- W4226513839 cites W2161969291 @default.
- W4226513839 cites W2250246219 @default.
- W4226513839 cites W2315784246 @default.
- W4226513839 cites W2565639579 @default.
- W4226513839 cites W2588974871 @default.
- W4226513839 cites W2794915299 @default.
- W4226513839 cites W2888621661 @default.
- W4226513839 cites W2913159224 @default.
- W4226513839 cites W2937084164 @default.
- W4226513839 cites W2963150697 @default.
- W4226513839 cites W2963857746 @default.
- W4226513839 cites W2997747012 @default.
- W4226513839 cites W3042011474 @default.
- W4226513839 cites W3097096317 @default.
- W4226513839 cites W3103911883 @default.
- W4226513839 cites W4245857691 @default.
- W4226513839 doi "https://doi.org/10.1109/icmla52953.2021.00121" @default.
- W4226513839 hasPublicationYear "2021" @default.
- W4226513839 type Work @default.
- W4226513839 citedByCount "0" @default.
- W4226513839 crossrefType "proceedings-article" @default.
- W4226513839 hasAuthorship W4226513839A5014082065 @default.
- W4226513839 hasAuthorship W4226513839A5059027322 @default.
- W4226513839 hasConcept C108583219 @default.
- W4226513839 hasConcept C111919701 @default.
- W4226513839 hasConcept C119857082 @default.
- W4226513839 hasConcept C153180895 @default.
- W4226513839 hasConcept C154945302 @default.
- W4226513839 hasConcept C186967261 @default.
- W4226513839 hasConcept C202444582 @default.
- W4226513839 hasConcept C2776151529 @default.
- W4226513839 hasConcept C33923547 @default.
- W4226513839 hasConcept C41008148 @default.
- W4226513839 hasConcept C9652623 @default.
- W4226513839 hasConceptScore W4226513839C108583219 @default.
- W4226513839 hasConceptScore W4226513839C111919701 @default.
- W4226513839 hasConceptScore W4226513839C119857082 @default.
- W4226513839 hasConceptScore W4226513839C153180895 @default.
- W4226513839 hasConceptScore W4226513839C154945302 @default.
- W4226513839 hasConceptScore W4226513839C186967261 @default.
- W4226513839 hasConceptScore W4226513839C202444582 @default.
- W4226513839 hasConceptScore W4226513839C2776151529 @default.
- W4226513839 hasConceptScore W4226513839C33923547 @default.
- W4226513839 hasConceptScore W4226513839C41008148 @default.
- W4226513839 hasConceptScore W4226513839C9652623 @default.
- W4226513839 hasLocation W42265138391 @default.
- W4226513839 hasOpenAccess W4226513839 @default.
- W4226513839 hasPrimaryLocation W42265138391 @default.
- W4226513839 hasRelatedWork W2970686063 @default.
- W4226513839 hasRelatedWork W3201484345 @default.
- W4226513839 hasRelatedWork W4223943233 @default.
- W4226513839 hasRelatedWork W4225161397 @default.
- W4226513839 hasRelatedWork W4309045103 @default.
- W4226513839 hasRelatedWork W4312200629 @default.
- W4226513839 hasRelatedWork W4312831135 @default.
- W4226513839 hasRelatedWork W4360585206 @default.
- W4226513839 hasRelatedWork W4364306694 @default.
- W4226513839 hasRelatedWork W4380086463 @default.
- W4226513839 isParatext "false" @default.
- W4226513839 isRetracted "false" @default.
- W4226513839 workType "article" @default.