Matches in SemOpenAlex for { <https://semopenalex.org/work/W4226514619> ?p ?o ?g. }
- W4226514619 endingPage "16" @default.
- W4226514619 startingPage "1" @default.
- W4226514619 abstract "To address the problem, it is difficult to extract fault features for neutral-point-clamped (NPC) three-level inverters under nonstationary conditions. This article proposes a multi-information feature fusion diagnosis method based on attention collaborative stacked long short-term memory (ASLSTM) neural networks. First, parallel structural stacked LSTM networks are constructed, which are used to automatically extract features from multisource time-series data. Then, the attention mechanism is applied to weight these features adaptively. Finally, the fault is identified by features that integrate multiple sources of information. In addition, the quantum particle swarm optimization (QPSO) algorithm is used to intelligently tune the hyperparameters of ASLSTM to improve the reasonableness of hyperparameter selection for the diagnostic model. The simulation results of the fault diagnosis of the NPC three-level inverter circuit show that the proposed method is able to extract high-discriminative features from raw data and has better diagnostic results under various conditions compared with other schemes." @default.
- W4226514619 created "2022-05-05" @default.
- W4226514619 creator A5023036302 @default.
- W4226514619 creator A5023244440 @default.
- W4226514619 creator A5028019626 @default.
- W4226514619 creator A5035479526 @default.
- W4226514619 creator A5062233182 @default.
- W4226514619 creator A5088524383 @default.
- W4226514619 date "2022-01-01" @default.
- W4226514619 modified "2023-10-09" @default.
- W4226514619 title "Fault Diagnosis Based on Attention Collaborative LSTM Networks for NPC Three-Level Inverters" @default.
- W4226514619 cites W2465871042 @default.
- W4226514619 cites W2548855597 @default.
- W4226514619 cites W2561092475 @default.
- W4226514619 cites W2761900131 @default.
- W4226514619 cites W2793428449 @default.
- W4226514619 cites W2794081072 @default.
- W4226514619 cites W2903983890 @default.
- W4226514619 cites W2906977069 @default.
- W4226514619 cites W2953029068 @default.
- W4226514619 cites W2969293599 @default.
- W4226514619 cites W2979435001 @default.
- W4226514619 cites W2981475793 @default.
- W4226514619 cites W2982172966 @default.
- W4226514619 cites W2992462461 @default.
- W4226514619 cites W2992721130 @default.
- W4226514619 cites W3011246678 @default.
- W4226514619 cites W3024005278 @default.
- W4226514619 cites W3029391820 @default.
- W4226514619 cites W3030129985 @default.
- W4226514619 cites W3040704874 @default.
- W4226514619 cites W3041440607 @default.
- W4226514619 cites W3041590855 @default.
- W4226514619 cites W3047374002 @default.
- W4226514619 cites W3088843445 @default.
- W4226514619 cites W3091969163 @default.
- W4226514619 cites W3094790588 @default.
- W4226514619 cites W3128775465 @default.
- W4226514619 cites W3134757685 @default.
- W4226514619 cites W3161505004 @default.
- W4226514619 cites W3163512502 @default.
- W4226514619 cites W3165481132 @default.
- W4226514619 cites W3167634146 @default.
- W4226514619 cites W3177794668 @default.
- W4226514619 cites W3198062697 @default.
- W4226514619 cites W4287495580 @default.
- W4226514619 doi "https://doi.org/10.1109/tim.2022.3169545" @default.
- W4226514619 hasPublicationYear "2022" @default.
- W4226514619 type Work @default.
- W4226514619 citedByCount "2" @default.
- W4226514619 countsByYear W42265146192023 @default.
- W4226514619 crossrefType "journal-article" @default.
- W4226514619 hasAuthorship W4226514619A5023036302 @default.
- W4226514619 hasAuthorship W4226514619A5023244440 @default.
- W4226514619 hasAuthorship W4226514619A5028019626 @default.
- W4226514619 hasAuthorship W4226514619A5035479526 @default.
- W4226514619 hasAuthorship W4226514619A5062233182 @default.
- W4226514619 hasAuthorship W4226514619A5088524383 @default.
- W4226514619 hasConcept C119857082 @default.
- W4226514619 hasConcept C124101348 @default.
- W4226514619 hasConcept C127313418 @default.
- W4226514619 hasConcept C138885662 @default.
- W4226514619 hasConcept C148483581 @default.
- W4226514619 hasConcept C153180895 @default.
- W4226514619 hasConcept C154945302 @default.
- W4226514619 hasConcept C165205528 @default.
- W4226514619 hasConcept C175551986 @default.
- W4226514619 hasConcept C2776401178 @default.
- W4226514619 hasConcept C41008148 @default.
- W4226514619 hasConcept C41895202 @default.
- W4226514619 hasConcept C50644808 @default.
- W4226514619 hasConcept C85617194 @default.
- W4226514619 hasConcept C8642999 @default.
- W4226514619 hasConcept C97931131 @default.
- W4226514619 hasConceptScore W4226514619C119857082 @default.
- W4226514619 hasConceptScore W4226514619C124101348 @default.
- W4226514619 hasConceptScore W4226514619C127313418 @default.
- W4226514619 hasConceptScore W4226514619C138885662 @default.
- W4226514619 hasConceptScore W4226514619C148483581 @default.
- W4226514619 hasConceptScore W4226514619C153180895 @default.
- W4226514619 hasConceptScore W4226514619C154945302 @default.
- W4226514619 hasConceptScore W4226514619C165205528 @default.
- W4226514619 hasConceptScore W4226514619C175551986 @default.
- W4226514619 hasConceptScore W4226514619C2776401178 @default.
- W4226514619 hasConceptScore W4226514619C41008148 @default.
- W4226514619 hasConceptScore W4226514619C41895202 @default.
- W4226514619 hasConceptScore W4226514619C50644808 @default.
- W4226514619 hasConceptScore W4226514619C85617194 @default.
- W4226514619 hasConceptScore W4226514619C8642999 @default.
- W4226514619 hasConceptScore W4226514619C97931131 @default.
- W4226514619 hasFunder F4320321001 @default.
- W4226514619 hasFunder F4320321878 @default.
- W4226514619 hasLocation W42265146191 @default.
- W4226514619 hasOpenAccess W4226514619 @default.
- W4226514619 hasPrimaryLocation W42265146191 @default.
- W4226514619 hasRelatedWork W2024160000 @default.
- W4226514619 hasRelatedWork W2061273563 @default.
- W4226514619 hasRelatedWork W2285052147 @default.