Matches in SemOpenAlex for { <https://semopenalex.org/work/W4228998153> ?p ?o ?g. }
- W4228998153 abstract "Abstract Background Medical digital twins are computational disease models for drug discovery and treatment. Unresolved problems include how to organize and prioritize between disease-associated changes in digital twins, on cellulome- and genome-wide scales. We present a dynamic framework that can be used to model such changes and thereby prioritize upstream regulators (URs) for biomarker- and drug discovery. Methods We started with seasonal allergic rhinitis (SAR) as a disease model, by analyses of in vitro allergen-stimulated peripheral blood mononuclear cells (PBMC) from SAR patients. Time-series a single-cell RNA-sequencing (scRNA-seq) data of these cells were used to construct multicellular network models (MNMs) at each time point of molecular interactions between cell types. We hypothesized that predicted molecular interactions between cell types in the MNMs could be traced to find an UR gene, at an early time point. We performed bioinformatic and functional studies of the MNMs to develop a scalable framework to prioritize UR genes. This framework was tested on a single-cell and bulk-profiling data from SAR and other inflammatory diseases. Results Our scRNA-seq-based time-series MNMs of SAR showed thousands of differentially expressed genes (DEGs) across multiple cell types, which varied between time points. Instead of a single-UR gene in each MNM, we found multiple URs dispersed across the cell types. Thus, at each time point, the MNMs formed multi-directional networks. The absence of linear hierarchies and time-dependent variations in MNMs complicated the prioritization of URs. For example, the expression and functions of Th2 cytokines, which are approved drug targets in allergies, varied across cell types, and time points. Our analyses of bulk- and single-cell data from other inflammatory diseases also revealed multi-directional networks that showed stage-dependent variations. We therefore developed a quantitative approach to prioritize URs: we ranked the URs based on their predicted effects on downstream target cells. Experimental and bioinformatic analyses supported that this kind of ranking is a tractable approach for prioritizing URs. Conclusions We present a scalable framework for modeling dynamic changes in digital twins, on cellulome- and genome-wide scales, to prioritize UR genes for biomarker and drug discovery." @default.
- W4228998153 created "2022-05-08" @default.
- W4228998153 creator A5001292249 @default.
- W4228998153 creator A5003029603 @default.
- W4228998153 creator A5011048840 @default.
- W4228998153 creator A5020897531 @default.
- W4228998153 creator A5024120345 @default.
- W4228998153 creator A5028396638 @default.
- W4228998153 creator A5037841594 @default.
- W4228998153 creator A5045043575 @default.
- W4228998153 creator A5049368930 @default.
- W4228998153 creator A5049770857 @default.
- W4228998153 creator A5051906875 @default.
- W4228998153 creator A5077217979 @default.
- W4228998153 creator A5083579373 @default.
- W4228998153 creator A5090366405 @default.
- W4228998153 date "2022-05-06" @default.
- W4228998153 modified "2023-10-16" @default.
- W4228998153 title "A dynamic single cell-based framework for digital twins to prioritize disease genes and drug targets" @default.
- W4228998153 cites W1976115038 @default.
- W4228998153 cites W1980179446 @default.
- W4228998153 cites W1984883254 @default.
- W4228998153 cites W2017531023 @default.
- W4228998153 cites W2062533676 @default.
- W4228998153 cites W2068259827 @default.
- W4228998153 cites W2069089843 @default.
- W4228998153 cites W2075868099 @default.
- W4228998153 cites W2100239923 @default.
- W4228998153 cites W2104248821 @default.
- W4228998153 cites W2110065044 @default.
- W4228998153 cites W2113446988 @default.
- W4228998153 cites W2146512944 @default.
- W4228998153 cites W2162143298 @default.
- W4228998153 cites W2164683872 @default.
- W4228998153 cites W2169456326 @default.
- W4228998153 cites W2272703292 @default.
- W4228998153 cites W2341128841 @default.
- W4228998153 cites W2515922889 @default.
- W4228998153 cites W2582033455 @default.
- W4228998153 cites W2588569583 @default.
- W4228998153 cites W2600453489 @default.
- W4228998153 cites W2626606138 @default.
- W4228998153 cites W2736715037 @default.
- W4228998153 cites W2753317696 @default.
- W4228998153 cites W2755506253 @default.
- W4228998153 cites W2774504697 @default.
- W4228998153 cites W2774761491 @default.
- W4228998153 cites W2892146033 @default.
- W4228998153 cites W2900411771 @default.
- W4228998153 cites W2955791435 @default.
- W4228998153 cites W2964507182 @default.
- W4228998153 cites W2976301483 @default.
- W4228998153 cites W2976711859 @default.
- W4228998153 cites W2983166786 @default.
- W4228998153 cites W2992151131 @default.
- W4228998153 cites W2999348672 @default.
- W4228998153 cites W2999365564 @default.
- W4228998153 cites W3007935255 @default.
- W4228998153 cites W3014325962 @default.
- W4228998153 cites W3014413945 @default.
- W4228998153 cites W3043841327 @default.
- W4228998153 cites W3081528139 @default.
- W4228998153 cites W3083230937 @default.
- W4228998153 cites W3110852430 @default.
- W4228998153 cites W3116048312 @default.
- W4228998153 cites W3127504285 @default.
- W4228998153 cites W3135252715 @default.
- W4228998153 cites W3135755054 @default.
- W4228998153 cites W3163235749 @default.
- W4228998153 cites W3164894983 @default.
- W4228998153 cites W3171467084 @default.
- W4228998153 cites W3176497990 @default.
- W4228998153 cites W4211028654 @default.
- W4228998153 cites W4228998153 @default.
- W4228998153 doi "https://doi.org/10.1186/s13073-022-01048-4" @default.
- W4228998153 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35513850" @default.
- W4228998153 hasPublicationYear "2022" @default.
- W4228998153 type Work @default.
- W4228998153 citedByCount "8" @default.
- W4228998153 countsByYear W42289981532022 @default.
- W4228998153 countsByYear W42289981532023 @default.
- W4228998153 crossrefType "journal-article" @default.
- W4228998153 hasAuthorship W4228998153A5001292249 @default.
- W4228998153 hasAuthorship W4228998153A5003029603 @default.
- W4228998153 hasAuthorship W4228998153A5011048840 @default.
- W4228998153 hasAuthorship W4228998153A5020897531 @default.
- W4228998153 hasAuthorship W4228998153A5024120345 @default.
- W4228998153 hasAuthorship W4228998153A5028396638 @default.
- W4228998153 hasAuthorship W4228998153A5037841594 @default.
- W4228998153 hasAuthorship W4228998153A5045043575 @default.
- W4228998153 hasAuthorship W4228998153A5049368930 @default.
- W4228998153 hasAuthorship W4228998153A5049770857 @default.
- W4228998153 hasAuthorship W4228998153A5051906875 @default.
- W4228998153 hasAuthorship W4228998153A5077217979 @default.
- W4228998153 hasAuthorship W4228998153A5083579373 @default.
- W4228998153 hasAuthorship W4228998153A5090366405 @default.
- W4228998153 hasBestOaLocation W42289981531 @default.
- W4228998153 hasConcept C104317684 @default.
- W4228998153 hasConcept C142724271 @default.
- W4228998153 hasConcept C1491633281 @default.