Matches in SemOpenAlex for { <https://semopenalex.org/work/W4228999430> ?p ?o ?g. }
- W4228999430 endingPage "119420" @default.
- W4228999430 startingPage "119420" @default.
- W4228999430 abstract "China was seriously affected by air pollution in the past decade, especially for particulate matter (PM) and emerging ozone pollution recently. In this study, we systematically examined the spatiotemporal variations of six air pollutants and conducted ozone prediction using machine learning (ML) algorithms in the Beijing-Tianjin-Hebei (BTH) region. The annual-average concentrations of CO, PM10, PM2.5 and SO2 decreased at a rate of 141, 11.0, 6.6 and 5.6 μg/m3/year, while a pattern of initial increase and later decrease was observed for NO2 and O3_8 h. The concentration of SO2, CO and NO2 was higher in Tangshan and Xingtai, while northern BTH region has lower levels of CO, NO2 and PM. Spatial variations of ozone were relatively small in the BTH region. Monthly variations of PM10 displayed an increase in March probably due to wind-blown dusts from Northwest China. A seasonal and diurnal pattern with summer and afternoon peaks was found for ozone, which was contrast with other pollutants. Further ML algorithms such as Random Forest (RF) model and Decision tree (DT) regression showed good ozone prediction performance (daily: R2 = 0.83 and 0.73, RMSE = 30.0 and 37.3 μg/m3, respectively; monthly: R2 = 0.93 and 0.88, RMSE = 12.1 and 15.8 μg/m3, respectively) based on 10-fold cross-validation. Both RF model and DT regression relied more on the spatial trend as higher temporal prediction performance was achieved. Solar radiation- and temperature-related variables presented high importance at daily level, whereas sea level pressure dominated at monthly level. The spatiotemporal heterogeneity in variable importance was further confirmed using case studies based on RF model. In addition, variable importance was possibly influenced by the emission reductions due to COVID-19 pandemic. Despite its possible weakness to capture ozone extremes, RF model was beneficial and suggested for predicting spatiotemporal variations of ozone in future studies." @default.
- W4228999430 created "2022-05-08" @default.
- W4228999430 creator A5008919392 @default.
- W4228999430 creator A5009232538 @default.
- W4228999430 creator A5009594218 @default.
- W4228999430 creator A5065789029 @default.
- W4228999430 creator A5066931515 @default.
- W4228999430 creator A5075794646 @default.
- W4228999430 date "2022-08-01" @default.
- W4228999430 modified "2023-09-30" @default.
- W4228999430 title "Spatiotemporal variations of air pollutants and ozone prediction using machine learning algorithms in the Beijing-Tianjin-Hebei region from 2014 to 2021" @default.
- W4228999430 cites W1634198811 @default.
- W4228999430 cites W1829353783 @default.
- W4228999430 cites W1977782719 @default.
- W4228999430 cites W1984470640 @default.
- W4228999430 cites W2014859977 @default.
- W4228999430 cites W2023307338 @default.
- W4228999430 cites W2027505123 @default.
- W4228999430 cites W2046448101 @default.
- W4228999430 cites W2053134908 @default.
- W4228999430 cites W2083441060 @default.
- W4228999430 cites W2085329421 @default.
- W4228999430 cites W2110885569 @default.
- W4228999430 cites W2130042267 @default.
- W4228999430 cites W2158822760 @default.
- W4228999430 cites W2166604768 @default.
- W4228999430 cites W2318698569 @default.
- W4228999430 cites W2488851807 @default.
- W4228999430 cites W2532505215 @default.
- W4228999430 cites W2554285426 @default.
- W4228999430 cites W2566760819 @default.
- W4228999430 cites W2581321420 @default.
- W4228999430 cites W2610316289 @default.
- W4228999430 cites W2767085346 @default.
- W4228999430 cites W2768004339 @default.
- W4228999430 cites W2791671786 @default.
- W4228999430 cites W2884846562 @default.
- W4228999430 cites W2898407312 @default.
- W4228999430 cites W2911964244 @default.
- W4228999430 cites W2913324262 @default.
- W4228999430 cites W2914387756 @default.
- W4228999430 cites W2914670930 @default.
- W4228999430 cites W2939064738 @default.
- W4228999430 cites W2943099351 @default.
- W4228999430 cites W2954586028 @default.
- W4228999430 cites W2954992390 @default.
- W4228999430 cites W2977733682 @default.
- W4228999430 cites W2979380693 @default.
- W4228999430 cites W2981618144 @default.
- W4228999430 cites W2981927324 @default.
- W4228999430 cites W2990513755 @default.
- W4228999430 cites W2990705976 @default.
- W4228999430 cites W3005704948 @default.
- W4228999430 cites W3034075062 @default.
- W4228999430 cites W3037226097 @default.
- W4228999430 cites W3072681182 @default.
- W4228999430 cites W3092665349 @default.
- W4228999430 cites W3100935125 @default.
- W4228999430 cites W3119335550 @default.
- W4228999430 cites W3128072837 @default.
- W4228999430 cites W3134181703 @default.
- W4228999430 cites W3135158015 @default.
- W4228999430 cites W3156882970 @default.
- W4228999430 cites W3186035175 @default.
- W4228999430 doi "https://doi.org/10.1016/j.envpol.2022.119420" @default.
- W4228999430 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35526642" @default.
- W4228999430 hasPublicationYear "2022" @default.
- W4228999430 type Work @default.
- W4228999430 citedByCount "18" @default.
- W4228999430 countsByYear W42289994302022 @default.
- W4228999430 countsByYear W42289994302023 @default.
- W4228999430 crossrefType "journal-article" @default.
- W4228999430 hasAuthorship W4228999430A5008919392 @default.
- W4228999430 hasAuthorship W4228999430A5009232538 @default.
- W4228999430 hasAuthorship W4228999430A5009594218 @default.
- W4228999430 hasAuthorship W4228999430A5065789029 @default.
- W4228999430 hasAuthorship W4228999430A5066931515 @default.
- W4228999430 hasAuthorship W4228999430A5075794646 @default.
- W4228999430 hasConcept C127313418 @default.
- W4228999430 hasConcept C153294291 @default.
- W4228999430 hasConcept C161067210 @default.
- W4228999430 hasConcept C166957645 @default.
- W4228999430 hasConcept C178790620 @default.
- W4228999430 hasConcept C185592680 @default.
- W4228999430 hasConcept C18903297 @default.
- W4228999430 hasConcept C191935318 @default.
- W4228999430 hasConcept C205649164 @default.
- W4228999430 hasConcept C24245907 @default.
- W4228999430 hasConcept C2778304055 @default.
- W4228999430 hasConcept C2987853052 @default.
- W4228999430 hasConcept C39432304 @default.
- W4228999430 hasConcept C49204034 @default.
- W4228999430 hasConcept C508106653 @default.
- W4228999430 hasConcept C521259446 @default.
- W4228999430 hasConcept C559116025 @default.
- W4228999430 hasConcept C82685317 @default.
- W4228999430 hasConcept C86803240 @default.
- W4228999430 hasConcept C91586092 @default.