Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229006064> ?p ?o ?g. }
- W4229006064 abstract "Stroke is a major global health burden, and risk prediction is essential for the primary prevention of stroke. However, uncertainty remains about the optimal prediction model for analyzing stroke risk. In this study, we aim to determine the most effective stroke prediction method in a Chinese hypertensive population using machine learning and establish a general methodological pipeline for future analysis.The training set included 70% of data (n = 14,491) from the China Stroke Primary Prevention Trial (CSPPT). Internal validation was processed with the rest 30% of CSPPT data (n = 6,211), and external validation was conducted using a nested case-control (NCC) dataset (n = 2,568). The primary outcome was the first stroke. Four received analysis methods were processed and compared: logistic regression (LR), stepwise logistic regression (SLR), extreme gradient boosting (XGBoost), and random forest (RF). Population characteristic data with inclusion and exclusion of laboratory variables were separately analyzed. Accuracy, sensitivity, specificity, kappa, and area under receiver operating characteristic curves (AUCs) were used to make model assessments with AUCs the top concern. Data balancing techniques, including random under-sampling (RUS) and synthetic minority over-sampling technique (SMOTE), were applied to process this unbalanced training set.The best model performance was observed in RUS-applied RF model with laboratory variables. Compared with null models (sensitivity = 0, specificity = 100, and mean AUCs = 0.643), data balancing techniques improved overall performance with RUS, demonstrating a more satisfactory effect in the current study (RUS: sensitivity = 63.9; specificity = 53.7; and mean AUCs = 0.624. Adding laboratory variables improved the performance of analysis methods. All results were reconfirmed in validation sets. The top 10 important variables were determined by the analysis method with the best performance.Among the tested methods, the most effective stroke prediction model in targeted population is RUS-applied RF. From the insights, the current study revealed, we provided general frameworks for building machine learning-based prediction models." @default.
- W4229006064 created "2022-05-08" @default.
- W4229006064 creator A5001290903 @default.
- W4229006064 creator A5002720532 @default.
- W4229006064 creator A5017096513 @default.
- W4229006064 creator A5019450991 @default.
- W4229006064 creator A5020874682 @default.
- W4229006064 creator A5029855304 @default.
- W4229006064 creator A5033020983 @default.
- W4229006064 creator A5036590822 @default.
- W4229006064 creator A5037534561 @default.
- W4229006064 creator A5041156885 @default.
- W4229006064 creator A5043865368 @default.
- W4229006064 creator A5045772918 @default.
- W4229006064 creator A5049859611 @default.
- W4229006064 creator A5053467018 @default.
- W4229006064 creator A5064329078 @default.
- W4229006064 creator A5068816372 @default.
- W4229006064 creator A5080268249 @default.
- W4229006064 creator A5080427269 @default.
- W4229006064 creator A5081296854 @default.
- W4229006064 creator A5086664284 @default.
- W4229006064 creator A5087045654 @default.
- W4229006064 date "2022-05-06" @default.
- W4229006064 modified "2023-10-17" @default.
- W4229006064 title "Novel Insights on Establishing Machine Learning-Based Stroke Prediction Models Among Hypertensive Adults" @default.
- W4229006064 cites W1723129825 @default.
- W4229006064 cites W1969965209 @default.
- W4229006064 cites W1991181258 @default.
- W4229006064 cites W1998392635 @default.
- W4229006064 cites W2006940889 @default.
- W4229006064 cites W2069388901 @default.
- W4229006064 cites W2094754309 @default.
- W4229006064 cites W2105981176 @default.
- W4229006064 cites W2140685775 @default.
- W4229006064 cites W2155555718 @default.
- W4229006064 cites W2158621858 @default.
- W4229006064 cites W2569387348 @default.
- W4229006064 cites W2620123472 @default.
- W4229006064 cites W2743269518 @default.
- W4229006064 cites W2889276168 @default.
- W4229006064 cites W2893462288 @default.
- W4229006064 cites W2908465383 @default.
- W4229006064 cites W2921570235 @default.
- W4229006064 cites W2921833330 @default.
- W4229006064 cites W2923418412 @default.
- W4229006064 cites W2968692091 @default.
- W4229006064 cites W2972144420 @default.
- W4229006064 cites W2981311951 @default.
- W4229006064 cites W2982172055 @default.
- W4229006064 cites W2986446268 @default.
- W4229006064 cites W2989335918 @default.
- W4229006064 cites W3011139747 @default.
- W4229006064 cites W3126314199 @default.
- W4229006064 cites W4233026002 @default.
- W4229006064 cites W58801888 @default.
- W4229006064 doi "https://doi.org/10.3389/fcvm.2022.901240" @default.
- W4229006064 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35600480" @default.
- W4229006064 hasPublicationYear "2022" @default.
- W4229006064 type Work @default.
- W4229006064 citedByCount "4" @default.
- W4229006064 countsByYear W42290060642022 @default.
- W4229006064 countsByYear W42290060642023 @default.
- W4229006064 crossrefType "journal-article" @default.
- W4229006064 hasAuthorship W4229006064A5001290903 @default.
- W4229006064 hasAuthorship W4229006064A5002720532 @default.
- W4229006064 hasAuthorship W4229006064A5017096513 @default.
- W4229006064 hasAuthorship W4229006064A5019450991 @default.
- W4229006064 hasAuthorship W4229006064A5020874682 @default.
- W4229006064 hasAuthorship W4229006064A5029855304 @default.
- W4229006064 hasAuthorship W4229006064A5033020983 @default.
- W4229006064 hasAuthorship W4229006064A5036590822 @default.
- W4229006064 hasAuthorship W4229006064A5037534561 @default.
- W4229006064 hasAuthorship W4229006064A5041156885 @default.
- W4229006064 hasAuthorship W4229006064A5043865368 @default.
- W4229006064 hasAuthorship W4229006064A5045772918 @default.
- W4229006064 hasAuthorship W4229006064A5049859611 @default.
- W4229006064 hasAuthorship W4229006064A5053467018 @default.
- W4229006064 hasAuthorship W4229006064A5064329078 @default.
- W4229006064 hasAuthorship W4229006064A5068816372 @default.
- W4229006064 hasAuthorship W4229006064A5080268249 @default.
- W4229006064 hasAuthorship W4229006064A5080427269 @default.
- W4229006064 hasAuthorship W4229006064A5081296854 @default.
- W4229006064 hasAuthorship W4229006064A5086664284 @default.
- W4229006064 hasAuthorship W4229006064A5087045654 @default.
- W4229006064 hasBestOaLocation W42290060641 @default.
- W4229006064 hasConcept C105795698 @default.
- W4229006064 hasConcept C119857082 @default.
- W4229006064 hasConcept C127413603 @default.
- W4229006064 hasConcept C151956035 @default.
- W4229006064 hasConcept C154945302 @default.
- W4229006064 hasConcept C169258074 @default.
- W4229006064 hasConcept C170964787 @default.
- W4229006064 hasConcept C2780645631 @default.
- W4229006064 hasConcept C2908647359 @default.
- W4229006064 hasConcept C33923547 @default.
- W4229006064 hasConcept C41008148 @default.
- W4229006064 hasConcept C45804977 @default.
- W4229006064 hasConcept C58471807 @default.
- W4229006064 hasConcept C70153297 @default.