Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229008276> ?p ?o ?g. }
- W4229008276 endingPage "3535" @default.
- W4229008276 startingPage "3519" @default.
- W4229008276 abstract "Abstract. The use of statistical models to study the impact of weather on crop yield has not ceased to increase. Unfortunately, this type of application is characterized by datasets with a very limited number of samples (typically one sample per year). In general, statistical inference uses three datasets: the training dataset to optimize the model parameters, the validation dataset to select the best model, and the testing dataset to evaluate the model generalization ability. Splitting the overall database into three datasets is often impossible in crop yield modelling due to the limited number of samples. The leave-one-out cross-validation method, or simply leave one out (LOO), is often used to assess model performance or to select among competing models when the sample size is small. However, the model choice is typically made using only the testing dataset, which can be misleading by favouring unnecessarily complex models. The nested cross-validation approach was introduced in machine learning to avoid this problem by truly utilizing three datasets even with limited databases. In this study, we propose one particular implementation of the nested cross-validation, called the nested leave-two-out cross-validation method or simply the leave two out (LTO), to choose the best model with an optimal model selection (using the validation dataset) and estimate the true model quality (using the testing dataset). Two applications are considered: robusta coffee in Cu M'gar (Dak Lak, Vietnam) and grain maize over 96 French departments. In both cases, LOO is misleading by choosing models that are too complex; LTO indicates that simpler models actually perform better when a reliable generalization test is considered. The simple models obtained using the LTO approach have improved yield anomaly forecasting skills in both study crops. This LTO approach can also be used in seasonal forecasting applications. We suggest that the LTO method should become a standard procedure for statistical crop modelling." @default.
- W4229008276 created "2022-05-08" @default.
- W4229008276 creator A5055929239 @default.
- W4229008276 creator A5062532198 @default.
- W4229008276 date "2022-05-05" @default.
- W4229008276 modified "2023-09-30" @default.
- W4229008276 title "Nested leave-two-out cross-validation for the optimal crop yield model selection" @default.
- W4229008276 cites W1790448900 @default.
- W4229008276 cites W1872197921 @default.
- W4229008276 cites W1972226891 @default.
- W4229008276 cites W1998101233 @default.
- W4229008276 cites W2011607584 @default.
- W4229008276 cites W2036649752 @default.
- W4229008276 cites W2041666117 @default.
- W4229008276 cites W2050297026 @default.
- W4229008276 cites W2058155591 @default.
- W4229008276 cites W2063405905 @default.
- W4229008276 cites W2076063813 @default.
- W4229008276 cites W2077766806 @default.
- W4229008276 cites W2107956883 @default.
- W4229008276 cites W2109348122 @default.
- W4229008276 cites W2112081648 @default.
- W4229008276 cites W2112762087 @default.
- W4229008276 cites W2117162642 @default.
- W4229008276 cites W2117812871 @default.
- W4229008276 cites W2120889976 @default.
- W4229008276 cites W2127154958 @default.
- W4229008276 cites W2144990831 @default.
- W4229008276 cites W2189719333 @default.
- W4229008276 cites W2279820786 @default.
- W4229008276 cites W2464695901 @default.
- W4229008276 cites W2490065547 @default.
- W4229008276 cites W2520535592 @default.
- W4229008276 cites W2534929505 @default.
- W4229008276 cites W2543175078 @default.
- W4229008276 cites W2605237875 @default.
- W4229008276 cites W2790454634 @default.
- W4229008276 cites W2796365778 @default.
- W4229008276 cites W2806805149 @default.
- W4229008276 cites W2810045082 @default.
- W4229008276 cites W2884394515 @default.
- W4229008276 cites W2899775411 @default.
- W4229008276 cites W2915536774 @default.
- W4229008276 cites W2922211418 @default.
- W4229008276 cites W2962084458 @default.
- W4229008276 cites W3013281996 @default.
- W4229008276 cites W3040241124 @default.
- W4229008276 cites W3042462276 @default.
- W4229008276 cites W3083643364 @default.
- W4229008276 cites W3102541766 @default.
- W4229008276 cites W3108339989 @default.
- W4229008276 cites W3127355463 @default.
- W4229008276 cites W3184850568 @default.
- W4229008276 cites W4210262681 @default.
- W4229008276 cites W4210648098 @default.
- W4229008276 doi "https://doi.org/10.5194/gmd-15-3519-2022" @default.
- W4229008276 hasPublicationYear "2022" @default.
- W4229008276 type Work @default.
- W4229008276 citedByCount "3" @default.
- W4229008276 countsByYear W42290082762022 @default.
- W4229008276 countsByYear W42290082762023 @default.
- W4229008276 crossrefType "journal-article" @default.
- W4229008276 hasAuthorship W4229008276A5055929239 @default.
- W4229008276 hasAuthorship W4229008276A5062532198 @default.
- W4229008276 hasBestOaLocation W42290082761 @default.
- W4229008276 hasConcept C103000020 @default.
- W4229008276 hasConcept C105795698 @default.
- W4229008276 hasConcept C119857082 @default.
- W4229008276 hasConcept C124101348 @default.
- W4229008276 hasConcept C125453309 @default.
- W4229008276 hasConcept C129848803 @default.
- W4229008276 hasConcept C134121241 @default.
- W4229008276 hasConcept C134306372 @default.
- W4229008276 hasConcept C154945302 @default.
- W4229008276 hasConcept C164126121 @default.
- W4229008276 hasConcept C177148314 @default.
- W4229008276 hasConcept C185592680 @default.
- W4229008276 hasConcept C191897082 @default.
- W4229008276 hasConcept C192562407 @default.
- W4229008276 hasConcept C198531522 @default.
- W4229008276 hasConcept C27181475 @default.
- W4229008276 hasConcept C2776214188 @default.
- W4229008276 hasConcept C33923547 @default.
- W4229008276 hasConcept C41008148 @default.
- W4229008276 hasConcept C43617362 @default.
- W4229008276 hasConcept C45804977 @default.
- W4229008276 hasConcept C5655090 @default.
- W4229008276 hasConcept C81917197 @default.
- W4229008276 hasConcept C93959086 @default.
- W4229008276 hasConceptScore W4229008276C103000020 @default.
- W4229008276 hasConceptScore W4229008276C105795698 @default.
- W4229008276 hasConceptScore W4229008276C119857082 @default.
- W4229008276 hasConceptScore W4229008276C124101348 @default.
- W4229008276 hasConceptScore W4229008276C125453309 @default.
- W4229008276 hasConceptScore W4229008276C129848803 @default.
- W4229008276 hasConceptScore W4229008276C134121241 @default.
- W4229008276 hasConceptScore W4229008276C134306372 @default.
- W4229008276 hasConceptScore W4229008276C154945302 @default.