Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229012873> ?p ?o ?g. }
- W4229012873 endingPage "2199" @default.
- W4229012873 startingPage "2199" @default.
- W4229012873 abstract "Landsat has provided the longest fine resolution data archive of Earth’s environment since 1972; however, one of the challenges in using Landsat data for various applications is its frequent large data gaps and heavy cloud contaminations. One pressing research topic is to generate the regular time series by integrating coarse-resolution satellite data through data fusion techniques. This study presents a novel spatiotemporal fusion (STF) method based on a depthwise separable convolutional neural network (DSC), namely, STFDSC, to generate Landsat-surface reflectance time series at 8-day intervals by fusing Landsat 30 m with high-quality Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m surface reflectance data. The STFDSC method consists of three main stages: feature extraction, feature fusion and prediction. Features were first extracted from Landsat and MODIS surface reflectance changes, and the extracted multilevel features were then stacked and fused. Both low-level and middle-level features that were generally ignored in convolutional neural network (CNN)-based fusion models were included in STFDSC to avoid key information loss and thus ensure high prediction accuracy. The prediction stage generated a Landsat residual image and is combined with original Landsat data to obtain predictions of Landsat imagery at the target date. The performance of STFDSC was evaluated in the Greater Khingan Mountains (GKM) in Northeast China and the Ziwuling (ZWL) forest region in Northwest China. A comparison of STFDSC with four published fusion methods, including two classic fusion methods (FSDAF, ESTARFM) and two machine learning methods (EDCSTFN and STFNET), was also carried out. The results showed that STFDSC made stable and more accurate predictions of Landsat surface reflectance than other methods in both the GKM and ZWL regions. The root-mean-square-errors (RMSEs) of TM bands 2, 3, 4, and 7 were 0.0046, 0.0038, 0.0143, and 0.0055 in GKM, respectively, and 0.0246, 0.0176, 0.0280, and 0.0141 in ZWL, respectively; it can be potentially used for generating the global surface reflectance and other high-level land products." @default.
- W4229012873 created "2022-05-08" @default.
- W4229012873 creator A5009954256 @default.
- W4229012873 creator A5010258098 @default.
- W4229012873 creator A5054276054 @default.
- W4229012873 creator A5084265145 @default.
- W4229012873 date "2022-05-04" @default.
- W4229012873 modified "2023-09-22" @default.
- W4229012873 title "A New Spatial–Temporal Depthwise Separable Convolutional Fusion Network for Generating Landsat 8-Day Surface Reflectance Time Series over Forest Regions" @default.
- W4229012873 cites W1855019729 @default.
- W4229012873 cites W1966205172 @default.
- W4229012873 cites W1966711117 @default.
- W4229012873 cites W1970515153 @default.
- W4229012873 cites W1974329551 @default.
- W4229012873 cites W1982956952 @default.
- W4229012873 cites W1992668584 @default.
- W4229012873 cites W2003224325 @default.
- W4229012873 cites W2014953693 @default.
- W4229012873 cites W2023306858 @default.
- W4229012873 cites W2027776168 @default.
- W4229012873 cites W2036627824 @default.
- W4229012873 cites W2055718260 @default.
- W4229012873 cites W2056811372 @default.
- W4229012873 cites W2056880581 @default.
- W4229012873 cites W2061929982 @default.
- W4229012873 cites W2065665222 @default.
- W4229012873 cites W2081951218 @default.
- W4229012873 cites W2086620533 @default.
- W4229012873 cites W2088603520 @default.
- W4229012873 cites W2105770001 @default.
- W4229012873 cites W2116287613 @default.
- W4229012873 cites W2200350976 @default.
- W4229012873 cites W2592532736 @default.
- W4229012873 cites W2604292667 @default.
- W4229012873 cites W2620546134 @default.
- W4229012873 cites W2742500659 @default.
- W4229012873 cites W2793445582 @default.
- W4229012873 cites W2793758196 @default.
- W4229012873 cites W2794040130 @default.
- W4229012873 cites W2798187540 @default.
- W4229012873 cites W2920930972 @default.
- W4229012873 cites W2939570633 @default.
- W4229012873 cites W2948500087 @default.
- W4229012873 cites W2992343265 @default.
- W4229012873 cites W2997047947 @default.
- W4229012873 cites W3000672846 @default.
- W4229012873 cites W3004741759 @default.
- W4229012873 cites W3009000090 @default.
- W4229012873 cites W3011030181 @default.
- W4229012873 cites W3034422010 @default.
- W4229012873 cites W3037820092 @default.
- W4229012873 cites W3096444413 @default.
- W4229012873 cites W3101012758 @default.
- W4229012873 cites W3101589483 @default.
- W4229012873 cites W3103230033 @default.
- W4229012873 cites W3116453415 @default.
- W4229012873 cites W3118451210 @default.
- W4229012873 doi "https://doi.org/10.3390/rs14092199" @default.
- W4229012873 hasPublicationYear "2022" @default.
- W4229012873 type Work @default.
- W4229012873 citedByCount "2" @default.
- W4229012873 countsByYear W42290128732022 @default.
- W4229012873 crossrefType "journal-article" @default.
- W4229012873 hasAuthorship W4229012873A5009954256 @default.
- W4229012873 hasAuthorship W4229012873A5010258098 @default.
- W4229012873 hasAuthorship W4229012873A5054276054 @default.
- W4229012873 hasAuthorship W4229012873A5084265145 @default.
- W4229012873 hasBestOaLocation W42290128731 @default.
- W4229012873 hasConcept C108597893 @default.
- W4229012873 hasConcept C11413529 @default.
- W4229012873 hasConcept C120665830 @default.
- W4229012873 hasConcept C121332964 @default.
- W4229012873 hasConcept C127313418 @default.
- W4229012873 hasConcept C127413603 @default.
- W4229012873 hasConcept C130066347 @default.
- W4229012873 hasConcept C138885662 @default.
- W4229012873 hasConcept C146978453 @default.
- W4229012873 hasConcept C154945302 @default.
- W4229012873 hasConcept C155512373 @default.
- W4229012873 hasConcept C158525013 @default.
- W4229012873 hasConcept C19269812 @default.
- W4229012873 hasConcept C2777007095 @default.
- W4229012873 hasConcept C33954974 @default.
- W4229012873 hasConcept C39432304 @default.
- W4229012873 hasConcept C41008148 @default.
- W4229012873 hasConcept C41895202 @default.
- W4229012873 hasConcept C62649853 @default.
- W4229012873 hasConcept C81363708 @default.
- W4229012873 hasConceptScore W4229012873C108597893 @default.
- W4229012873 hasConceptScore W4229012873C11413529 @default.
- W4229012873 hasConceptScore W4229012873C120665830 @default.
- W4229012873 hasConceptScore W4229012873C121332964 @default.
- W4229012873 hasConceptScore W4229012873C127313418 @default.
- W4229012873 hasConceptScore W4229012873C127413603 @default.
- W4229012873 hasConceptScore W4229012873C130066347 @default.
- W4229012873 hasConceptScore W4229012873C138885662 @default.
- W4229012873 hasConceptScore W4229012873C146978453 @default.
- W4229012873 hasConceptScore W4229012873C154945302 @default.