Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229013119> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4229013119 abstract "For the diagnosis of cancer and tumors, medical pathological image analysis is critical. Whereas, due to the diversity and complexity of pathological data, the segmentation task is faced with challenges such as blurred edges, less training data, difficulty in feature extraction and case segmentation. The advancement of deep learning technologies has resulted in breakthrough achievements in medical image analysis by its powerful feature learning, flexible design, and other characteristics, and it has widely applied. In recent years, many scholars have improved the classic segmentation method. By combining various segmentation methods, segmentation efficiency has effectively improved, and the improved algorithm makes up for the defects of the original segmentation method. In this review, we evaluated and examined the recent research accomplishments in medical picture segmentation using various deep learning approaches, as well as the future research directions for medical image segmentation using deep learning." @default.
- W4229013119 created "2022-05-08" @default.
- W4229013119 creator A5044008262 @default.
- W4229013119 creator A5046112287 @default.
- W4229013119 creator A5089079624 @default.
- W4229013119 creator A5089966579 @default.
- W4229013119 creator A5091042320 @default.
- W4229013119 date "2022-05-06" @default.
- W4229013119 modified "2023-10-05" @default.
- W4229013119 title "Research on medical image segmentation algorithm based on deep learning" @default.
- W4229013119 cites W1783315696 @default.
- W4229013119 cites W2522083379 @default.
- W4229013119 cites W2556022279 @default.
- W4229013119 cites W2807026579 @default.
- W4229013119 cites W2964227007 @default.
- W4229013119 cites W2971667786 @default.
- W4229013119 cites W2980323948 @default.
- W4229013119 cites W3005498024 @default.
- W4229013119 cites W4247836216 @default.
- W4229013119 cites W4250685322 @default.
- W4229013119 doi "https://doi.org/10.1117/12.2636509" @default.
- W4229013119 hasPublicationYear "2022" @default.
- W4229013119 type Work @default.
- W4229013119 citedByCount "0" @default.
- W4229013119 crossrefType "proceedings-article" @default.
- W4229013119 hasAuthorship W4229013119A5044008262 @default.
- W4229013119 hasAuthorship W4229013119A5046112287 @default.
- W4229013119 hasAuthorship W4229013119A5089079624 @default.
- W4229013119 hasAuthorship W4229013119A5089966579 @default.
- W4229013119 hasAuthorship W4229013119A5091042320 @default.
- W4229013119 hasConcept C108583219 @default.
- W4229013119 hasConcept C119857082 @default.
- W4229013119 hasConcept C124504099 @default.
- W4229013119 hasConcept C138885662 @default.
- W4229013119 hasConcept C153180895 @default.
- W4229013119 hasConcept C154945302 @default.
- W4229013119 hasConcept C25694479 @default.
- W4229013119 hasConcept C2776401178 @default.
- W4229013119 hasConcept C31972630 @default.
- W4229013119 hasConcept C41008148 @default.
- W4229013119 hasConcept C41895202 @default.
- W4229013119 hasConcept C52622490 @default.
- W4229013119 hasConcept C65885262 @default.
- W4229013119 hasConcept C89600930 @default.
- W4229013119 hasConceptScore W4229013119C108583219 @default.
- W4229013119 hasConceptScore W4229013119C119857082 @default.
- W4229013119 hasConceptScore W4229013119C124504099 @default.
- W4229013119 hasConceptScore W4229013119C138885662 @default.
- W4229013119 hasConceptScore W4229013119C153180895 @default.
- W4229013119 hasConceptScore W4229013119C154945302 @default.
- W4229013119 hasConceptScore W4229013119C25694479 @default.
- W4229013119 hasConceptScore W4229013119C2776401178 @default.
- W4229013119 hasConceptScore W4229013119C31972630 @default.
- W4229013119 hasConceptScore W4229013119C41008148 @default.
- W4229013119 hasConceptScore W4229013119C41895202 @default.
- W4229013119 hasConceptScore W4229013119C52622490 @default.
- W4229013119 hasConceptScore W4229013119C65885262 @default.
- W4229013119 hasConceptScore W4229013119C89600930 @default.
- W4229013119 hasLocation W42290131191 @default.
- W4229013119 hasOpenAccess W4229013119 @default.
- W4229013119 hasPrimaryLocation W42290131191 @default.
- W4229013119 hasRelatedWork W134976887 @default.
- W4229013119 hasRelatedWork W1669643531 @default.
- W4229013119 hasRelatedWork W1982826852 @default.
- W4229013119 hasRelatedWork W2021143974 @default.
- W4229013119 hasRelatedWork W2274529912 @default.
- W4229013119 hasRelatedWork W2384989255 @default.
- W4229013119 hasRelatedWork W2517104666 @default.
- W4229013119 hasRelatedWork W2549936415 @default.
- W4229013119 hasRelatedWork W2566648451 @default.
- W4229013119 hasRelatedWork W1967061043 @default.
- W4229013119 isParatext "false" @default.
- W4229013119 isRetracted "false" @default.
- W4229013119 workType "article" @default.