Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229013406> ?p ?o ?g. }
- W4229013406 endingPage "108277" @default.
- W4229013406 startingPage "108277" @default.
- W4229013406 abstract "Automatic visual detection of key targets and defects for power transmission lines based on power transmission line inspection robots (PTLIR) and unmanned aerial vehicles (UAVs) is an ongoing trend in the smart grid development. The advancement of deep learning has accelerated the intelligence of power grid inspection. In terms of the power transmission line fittings detection application, improving the detection accuracy of small targets and defects using a deep learning detection network is challenging, owing to the complex background lighting characteristics of high-voltage power transmission lines in the wild. To address this problem, we present an inspection method for key targets and defects in high-voltage power transmission lines based on a deep learning object detection network. First, we collected sample images of key targets under different backgrounds, lighting conditions, and postures. Further, data augmentation was performed to solve the problem of imbalance in the number of target categories, and a large standard dataset was constructed. Second, we improved the extraction ability of small object features by optimizing the detection network. The precision and recall rate of the optimized detection network were 93.5% and 96.2%, respectively. Furthermore, small targets and defects in a complex environment could be successfully detected. Additionally, the detection of targets and defects in the inspection videos recorded by the PTLIR and UAVs were realized. Experimental results demonstrated that the proposed method performed well in the detection accuracy of key targets and defects in similar high-voltage power transmission line environments. It can realize remote, automatic inspection of high-voltage power transmission lines in the field." @default.
- W4229013406 created "2022-05-08" @default.
- W4229013406 creator A5001249056 @default.
- W4229013406 creator A5003822696 @default.
- W4229013406 creator A5045203924 @default.
- W4229013406 creator A5089472090 @default.
- W4229013406 creator A5091268064 @default.
- W4229013406 date "2022-11-01" @default.
- W4229013406 modified "2023-10-06" @default.
- W4229013406 title "Key target and defect detection of high-voltage power transmission lines with deep learning" @default.
- W4229013406 cites W178850970 @default.
- W4229013406 cites W2109255472 @default.
- W4229013406 cites W2151103935 @default.
- W4229013406 cites W2168356304 @default.
- W4229013406 cites W2194775991 @default.
- W4229013406 cites W2557728737 @default.
- W4229013406 cites W2565639579 @default.
- W4229013406 cites W2775910753 @default.
- W4229013406 cites W2783876128 @default.
- W4229013406 cites W2785422205 @default.
- W4229013406 cites W2791427330 @default.
- W4229013406 cites W2804870917 @default.
- W4229013406 cites W2897772777 @default.
- W4229013406 cites W2909309670 @default.
- W4229013406 cites W2910009410 @default.
- W4229013406 cites W2919115771 @default.
- W4229013406 cites W2943878449 @default.
- W4229013406 cites W2963857746 @default.
- W4229013406 cites W2988452876 @default.
- W4229013406 cites W3002355869 @default.
- W4229013406 cites W3012523496 @default.
- W4229013406 cites W3035396860 @default.
- W4229013406 cites W3042011474 @default.
- W4229013406 cites W3098650625 @default.
- W4229013406 cites W3122689890 @default.
- W4229013406 cites W3183804269 @default.
- W4229013406 cites W639708223 @default.
- W4229013406 doi "https://doi.org/10.1016/j.ijepes.2022.108277" @default.
- W4229013406 hasPublicationYear "2022" @default.
- W4229013406 type Work @default.
- W4229013406 citedByCount "18" @default.
- W4229013406 countsByYear W42290134062022 @default.
- W4229013406 countsByYear W42290134062023 @default.
- W4229013406 crossrefType "journal-article" @default.
- W4229013406 hasAuthorship W4229013406A5001249056 @default.
- W4229013406 hasAuthorship W4229013406A5003822696 @default.
- W4229013406 hasAuthorship W4229013406A5045203924 @default.
- W4229013406 hasAuthorship W4229013406A5089472090 @default.
- W4229013406 hasAuthorship W4229013406A5091268064 @default.
- W4229013406 hasConcept C108583219 @default.
- W4229013406 hasConcept C119599485 @default.
- W4229013406 hasConcept C121332964 @default.
- W4229013406 hasConcept C127413603 @default.
- W4229013406 hasConcept C140311924 @default.
- W4229013406 hasConcept C153180895 @default.
- W4229013406 hasConcept C154945302 @default.
- W4229013406 hasConcept C163258240 @default.
- W4229013406 hasConcept C165801399 @default.
- W4229013406 hasConcept C26517878 @default.
- W4229013406 hasConcept C2776151529 @default.
- W4229013406 hasConcept C31972630 @default.
- W4229013406 hasConcept C33441834 @default.
- W4229013406 hasConcept C38652104 @default.
- W4229013406 hasConcept C41008148 @default.
- W4229013406 hasConcept C62520636 @default.
- W4229013406 hasConcept C761482 @default.
- W4229013406 hasConcept C76155785 @default.
- W4229013406 hasConcept C79403827 @default.
- W4229013406 hasConcept C88182573 @default.
- W4229013406 hasConcept C92018576 @default.
- W4229013406 hasConceptScore W4229013406C108583219 @default.
- W4229013406 hasConceptScore W4229013406C119599485 @default.
- W4229013406 hasConceptScore W4229013406C121332964 @default.
- W4229013406 hasConceptScore W4229013406C127413603 @default.
- W4229013406 hasConceptScore W4229013406C140311924 @default.
- W4229013406 hasConceptScore W4229013406C153180895 @default.
- W4229013406 hasConceptScore W4229013406C154945302 @default.
- W4229013406 hasConceptScore W4229013406C163258240 @default.
- W4229013406 hasConceptScore W4229013406C165801399 @default.
- W4229013406 hasConceptScore W4229013406C26517878 @default.
- W4229013406 hasConceptScore W4229013406C2776151529 @default.
- W4229013406 hasConceptScore W4229013406C31972630 @default.
- W4229013406 hasConceptScore W4229013406C33441834 @default.
- W4229013406 hasConceptScore W4229013406C38652104 @default.
- W4229013406 hasConceptScore W4229013406C41008148 @default.
- W4229013406 hasConceptScore W4229013406C62520636 @default.
- W4229013406 hasConceptScore W4229013406C761482 @default.
- W4229013406 hasConceptScore W4229013406C76155785 @default.
- W4229013406 hasConceptScore W4229013406C79403827 @default.
- W4229013406 hasConceptScore W4229013406C88182573 @default.
- W4229013406 hasConceptScore W4229013406C92018576 @default.
- W4229013406 hasLocation W42290134061 @default.
- W4229013406 hasOpenAccess W4229013406 @default.
- W4229013406 hasPrimaryLocation W42290134061 @default.
- W4229013406 hasRelatedWork W2018466973 @default.
- W4229013406 hasRelatedWork W2050504211 @default.
- W4229013406 hasRelatedWork W2349524894 @default.
- W4229013406 hasRelatedWork W2367260928 @default.