Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229013439> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4229013439 endingPage "108581" @default.
- W4229013439 startingPage "108581" @default.
- W4229013439 abstract "• An adaptive WBI detection method based on TF kurtosis is proposed. Aiming to solving the poor robustness of the existing interference detection methods, this paper introduces TF kurtosis to measure the non-Gaussianity of the echo in the TF domain. It also achieves adaptive statistical detection of RFI with the Neiman Pearson criterion. • The proposed scheme addresses the conventional assumption of a complex Gaussian distribution for SAR echo signals by introducing the Laplace distribution to describe the SAR echo signal without interference, and thereby provide a L 1 –LRMF model, which can bring about a more satisfactory mitigation performance. • The hierarchical Bayesian posterior model promotes the robustness and generalization ability of the WBI mitigation algorithm with respect to unobserved SAR data. The L 1 norm LRMF method aims to describe the observed SAR data specifically, but it has the potential overfitting problem due to the deterministic model. The proposed algorithm utilizes the probability to introduce the uncertainty of interference mitigation model, which promotes the robustness on the unobserved SAR data. • The adoption of VBI for estimating these parameters in the present scheme addresses the lack of adaptability to changes in signal characteristics commonly encountered in existing interference mitigation methods. Moreover, estimating parameters using VBI also addresses the problems associated with parameter estimation based on the usual expectation-maximization algorithm, which involves a multiple-integration process that makes the estimation process extremely complicated and intractable for complex models. Wideband interference (WBI) seriously detracts from synthetic aperture radar (SAR) imaging quality and hinders the subsequent interpretation of images. Meanwhile, the large bandwidth and complex modulation of WBI necessitates the development of mitigation algorithms with strong adaptability and robustness that are lacking in existing algorithms based on filtering and model analysis. The present work addresses this issue by proposing a WBI mitigation algorithm based on variational Bayesian inference (VBI). Firstly, the WBI-contaminated echo signal is identified in the time–frequency (TF) domain through an adaptive statistical detection method. Then, a low-rank matrix factorization is formulated according to the low-rank characteristics of the WBI and the Laplace distribution assumption of the target echo signal in the TF domain. Finally, the WBI component is accurately reconstructed using a mean-field VBI method, and then eliminated from the original SAR echo signal to recover the target echo signal. The effectiveness and robustness of the proposed WBI mitigation algorithm are demonstrated based on its application to simulated and measured SAR data." @default.
- W4229013439 created "2022-05-08" @default.
- W4229013439 creator A5020632229 @default.
- W4229013439 creator A5043391532 @default.
- W4229013439 creator A5051684528 @default.
- W4229013439 creator A5072148680 @default.
- W4229013439 creator A5074283278 @default.
- W4229013439 creator A5080509511 @default.
- W4229013439 creator A5081186703 @default.
- W4229013439 date "2022-09-01" @default.
- W4229013439 modified "2023-09-22" @default.
- W4229013439 title "Wideband interference mitigation for synthetic aperture radar based on the variational Bayesian method" @default.
- W4229013439 cites W1936714692 @default.
- W4229013439 cites W1988896360 @default.
- W4229013439 cites W2002419082 @default.
- W4229013439 cites W2009758395 @default.
- W4229013439 cites W2027443896 @default.
- W4229013439 cites W2045995726 @default.
- W4229013439 cites W2049530934 @default.
- W4229013439 cites W2061960706 @default.
- W4229013439 cites W2072623250 @default.
- W4229013439 cites W2074769152 @default.
- W4229013439 cites W2076490896 @default.
- W4229013439 cites W2079299474 @default.
- W4229013439 cites W2084962682 @default.
- W4229013439 cites W2108591274 @default.
- W4229013439 cites W2138146421 @default.
- W4229013439 cites W2144145044 @default.
- W4229013439 cites W2275296373 @default.
- W4229013439 cites W2275779605 @default.
- W4229013439 cites W2739258379 @default.
- W4229013439 cites W2768875528 @default.
- W4229013439 cites W2803727731 @default.
- W4229013439 cites W2883070033 @default.
- W4229013439 cites W2948182883 @default.
- W4229013439 cites W2961105531 @default.
- W4229013439 cites W2969382431 @default.
- W4229013439 cites W2981622218 @default.
- W4229013439 doi "https://doi.org/10.1016/j.sigpro.2022.108581" @default.
- W4229013439 hasPublicationYear "2022" @default.
- W4229013439 type Work @default.
- W4229013439 citedByCount "2" @default.
- W4229013439 countsByYear W42290134392022 @default.
- W4229013439 crossrefType "journal-article" @default.
- W4229013439 hasAuthorship W4229013439A5020632229 @default.
- W4229013439 hasAuthorship W4229013439A5043391532 @default.
- W4229013439 hasAuthorship W4229013439A5051684528 @default.
- W4229013439 hasAuthorship W4229013439A5072148680 @default.
- W4229013439 hasAuthorship W4229013439A5074283278 @default.
- W4229013439 hasAuthorship W4229013439A5080509511 @default.
- W4229013439 hasAuthorship W4229013439A5081186703 @default.
- W4229013439 hasConcept C107673813 @default.
- W4229013439 hasConcept C11413529 @default.
- W4229013439 hasConcept C127162648 @default.
- W4229013439 hasConcept C127313418 @default.
- W4229013439 hasConcept C127413603 @default.
- W4229013439 hasConcept C154945302 @default.
- W4229013439 hasConcept C24326235 @default.
- W4229013439 hasConcept C2780202535 @default.
- W4229013439 hasConcept C32022120 @default.
- W4229013439 hasConcept C41008148 @default.
- W4229013439 hasConcept C554190296 @default.
- W4229013439 hasConcept C62649853 @default.
- W4229013439 hasConcept C76155785 @default.
- W4229013439 hasConcept C87360688 @default.
- W4229013439 hasConceptScore W4229013439C107673813 @default.
- W4229013439 hasConceptScore W4229013439C11413529 @default.
- W4229013439 hasConceptScore W4229013439C127162648 @default.
- W4229013439 hasConceptScore W4229013439C127313418 @default.
- W4229013439 hasConceptScore W4229013439C127413603 @default.
- W4229013439 hasConceptScore W4229013439C154945302 @default.
- W4229013439 hasConceptScore W4229013439C24326235 @default.
- W4229013439 hasConceptScore W4229013439C2780202535 @default.
- W4229013439 hasConceptScore W4229013439C32022120 @default.
- W4229013439 hasConceptScore W4229013439C41008148 @default.
- W4229013439 hasConceptScore W4229013439C554190296 @default.
- W4229013439 hasConceptScore W4229013439C62649853 @default.
- W4229013439 hasConceptScore W4229013439C76155785 @default.
- W4229013439 hasConceptScore W4229013439C87360688 @default.
- W4229013439 hasLocation W42290134391 @default.
- W4229013439 hasOpenAccess W4229013439 @default.
- W4229013439 hasPrimaryLocation W42290134391 @default.
- W4229013439 hasRelatedWork W1617892247 @default.
- W4229013439 hasRelatedWork W2091422131 @default.
- W4229013439 hasRelatedWork W2142660541 @default.
- W4229013439 hasRelatedWork W2365511432 @default.
- W4229013439 hasRelatedWork W2381136485 @default.
- W4229013439 hasRelatedWork W246080720 @default.
- W4229013439 hasRelatedWork W2532228045 @default.
- W4229013439 hasRelatedWork W254011709 @default.
- W4229013439 hasRelatedWork W2546856799 @default.
- W4229013439 hasRelatedWork W3014480821 @default.
- W4229013439 hasVolume "198" @default.
- W4229013439 isParatext "false" @default.
- W4229013439 isRetracted "false" @default.
- W4229013439 workType "article" @default.