Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229013544> ?p ?o ?g. }
- W4229013544 endingPage "731" @default.
- W4229013544 startingPage "721" @default.
- W4229013544 abstract "Bayesian-inference-based approaches, in particular the random-walk Markov Chain Monte Carlo (MCMC) method, have received much attention recently for X-ray scattering analysis. Hamiltonian MCMC, a state-of-the-art development in the field of MCMC, has become popular in recent years. It utilizes Hamiltonian dynamics for indirect but much more efficient drawings of the model parameters. We described the principle of the Hamiltonian MCMC for inversion problems in X-ray scattering analysis by estimating high-dimensional models for several motivating scenarios in small-angle X-ray scattering, reflectivity, and X-ray fluorescence holography. Hamiltonian MCMC with appropriate preconditioning can deliver superior performance over the random-walk MCMC, and thus can be used as an efficient tool for the statistical analysis of the parameter distributions, as well as model predictions and confidence analysis." @default.
- W4229013544 created "2022-05-08" @default.
- W4229013544 creator A5006465118 @default.
- W4229013544 creator A5018244700 @default.
- W4229013544 creator A5065286115 @default.
- W4229013544 creator A5068853530 @default.
- W4229013544 creator A5074279400 @default.
- W4229013544 date "2022-04-22" @default.
- W4229013544 modified "2023-09-26" @default.
- W4229013544 title "Parameter estimation for X-ray scattering analysis with Hamiltonian Markov Chain Monte Carlo" @default.
- W4229013544 cites W1979619742 @default.
- W4229013544 cites W2006039900 @default.
- W4229013544 cites W2021407985 @default.
- W4229013544 cites W2059448777 @default.
- W4229013544 cites W2101687185 @default.
- W4229013544 cites W2109805239 @default.
- W4229013544 cites W2144661611 @default.
- W4229013544 cites W2169713291 @default.
- W4229013544 cites W2217402295 @default.
- W4229013544 cites W224819109 @default.
- W4229013544 cites W2510431877 @default.
- W4229013544 cites W2577537660 @default.
- W4229013544 cites W2766819726 @default.
- W4229013544 cites W2766890298 @default.
- W4229013544 cites W2890257753 @default.
- W4229013544 cites W2900550278 @default.
- W4229013544 cites W2910070493 @default.
- W4229013544 cites W2954565006 @default.
- W4229013544 cites W2962777160 @default.
- W4229013544 cites W3037477577 @default.
- W4229013544 cites W3100062729 @default.
- W4229013544 cites W3102014803 @default.
- W4229013544 cites W3102098788 @default.
- W4229013544 cites W3185466722 @default.
- W4229013544 cites W3188026999 @default.
- W4229013544 cites W4205271872 @default.
- W4229013544 cites W4256038730 @default.
- W4229013544 doi "https://doi.org/10.1107/s1600577522003034" @default.
- W4229013544 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35511005" @default.
- W4229013544 hasPublicationYear "2022" @default.
- W4229013544 type Work @default.
- W4229013544 citedByCount "1" @default.
- W4229013544 countsByYear W42290135442023 @default.
- W4229013544 crossrefType "journal-article" @default.
- W4229013544 hasAuthorship W4229013544A5006465118 @default.
- W4229013544 hasAuthorship W4229013544A5018244700 @default.
- W4229013544 hasAuthorship W4229013544A5065286115 @default.
- W4229013544 hasAuthorship W4229013544A5068853530 @default.
- W4229013544 hasAuthorship W4229013544A5074279400 @default.
- W4229013544 hasBestOaLocation W42290135441 @default.
- W4229013544 hasConcept C105795698 @default.
- W4229013544 hasConcept C107673813 @default.
- W4229013544 hasConcept C111350023 @default.
- W4229013544 hasConcept C11413529 @default.
- W4229013544 hasConcept C119857082 @default.
- W4229013544 hasConcept C121194460 @default.
- W4229013544 hasConcept C121332964 @default.
- W4229013544 hasConcept C121864883 @default.
- W4229013544 hasConcept C124504099 @default.
- W4229013544 hasConcept C126255220 @default.
- W4229013544 hasConcept C130402806 @default.
- W4229013544 hasConcept C130787639 @default.
- W4229013544 hasConcept C13153151 @default.
- W4229013544 hasConcept C154945302 @default.
- W4229013544 hasConcept C160234255 @default.
- W4229013544 hasConcept C191486275 @default.
- W4229013544 hasConcept C19499675 @default.
- W4229013544 hasConcept C204693719 @default.
- W4229013544 hasConcept C2776214188 @default.
- W4229013544 hasConcept C2778045648 @default.
- W4229013544 hasConcept C33923547 @default.
- W4229013544 hasConcept C41008148 @default.
- W4229013544 hasConcept C62520636 @default.
- W4229013544 hasConcept C89600930 @default.
- W4229013544 hasConcept C98763669 @default.
- W4229013544 hasConceptScore W4229013544C105795698 @default.
- W4229013544 hasConceptScore W4229013544C107673813 @default.
- W4229013544 hasConceptScore W4229013544C111350023 @default.
- W4229013544 hasConceptScore W4229013544C11413529 @default.
- W4229013544 hasConceptScore W4229013544C119857082 @default.
- W4229013544 hasConceptScore W4229013544C121194460 @default.
- W4229013544 hasConceptScore W4229013544C121332964 @default.
- W4229013544 hasConceptScore W4229013544C121864883 @default.
- W4229013544 hasConceptScore W4229013544C124504099 @default.
- W4229013544 hasConceptScore W4229013544C126255220 @default.
- W4229013544 hasConceptScore W4229013544C130402806 @default.
- W4229013544 hasConceptScore W4229013544C130787639 @default.
- W4229013544 hasConceptScore W4229013544C13153151 @default.
- W4229013544 hasConceptScore W4229013544C154945302 @default.
- W4229013544 hasConceptScore W4229013544C160234255 @default.
- W4229013544 hasConceptScore W4229013544C191486275 @default.
- W4229013544 hasConceptScore W4229013544C19499675 @default.
- W4229013544 hasConceptScore W4229013544C204693719 @default.
- W4229013544 hasConceptScore W4229013544C2776214188 @default.
- W4229013544 hasConceptScore W4229013544C2778045648 @default.
- W4229013544 hasConceptScore W4229013544C33923547 @default.
- W4229013544 hasConceptScore W4229013544C41008148 @default.
- W4229013544 hasConceptScore W4229013544C62520636 @default.