Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229013646> ?p ?o ?g. }
- W4229013646 endingPage "1359" @default.
- W4229013646 startingPage "1349" @default.
- W4229013646 abstract "ConspectusWhen viewed through the lens of materials science, nature provides a vast library of hierarchically organized structures that serve as inspiration and raw materials for new synthetic materials. The structural organization of complex bioarchitectures with advanced functions arises from the association of building blocks and is strongly supported by ubiquitous mechanisms of self-assembly, where interactions among components result in spontaneous assembly into defined structures. Viruses are exemplary, where a capsid structure, often formed from the self-assembly of many individual protein subunits, serves as a vehicle for the transport and protection of the viral genome. Higher-order assemblies of viral particles are also found in nature with unexpected collective behaviors. When the infectious aspect of viruses is removed, the self-assembly of viral particles and their potential for hierarchical assembly become an inspiration for the design and construction of a new class of functional materials at a range of different length scales.Salmonella typhimurium bacteriophage P22 is a well-studied model for understanding viral self-assembly and the construction of virus-like particle (VLP)-based materials. The formation of cage-like P22 VLP structures results from scaffold protein (SP)-directed self-assembly of coat protein (CP) subunits into icosahedral capsids with encapsulation of SP inside the capsid. Employing the CP−SP interaction during self-assembly, the encapsulation of guest protein cargos inside P22 VLPs can be achieved with control over the composition and the number of guest cargos. The morphology of cargo-loaded VLPs can be altered, along with changes in both the physical properties of the capsid and the cargo–capsid interactions, by mimicking aspects of the infectious P22 viral maturation. The structure of the capsid differentiates the inside cavity from the outside environment and serves as a protecting layer for the encapsulated cargos. Pores in the capsid shell regulate molecular exchange between inside and outside, where small molecules can traverse the capsid freely while the diffusion of larger molecules is limited by the pores. The interior cavity of the P22 capsid can be packed with hundreds of copies of cargo proteins (especially enzymes), enforcing intermolecular proximity, making this an ideal model system in which to study enzymatic catalysis in crowded and confined environments. These aspects highlight the development of functional nanomaterials from individual P22 VLPs, through biomimetic design and self-assembly, resulting in fabrication of nanoreactors with controlled catalytic behaviors.Individual P22 VLPs have been used as building blocks for the self-assembly of higher-order structures. This relies on a balance between the intrinsic interparticle repulsion and a tunable interparticle attraction. The ordering of VLPs within three-dimensional assemblies is dependent on the balance between repulsive and attractive interactions: too strong an attraction results in kinetically trapped disordered structures, while decreasing the attraction can lead to more ordered arrays. These higher-order assemblies display collective behavior of high charge density beyond those of the individual VLPs.The development of synthetic nanomaterials based on P22 VLPs demonstrates how the potential for hierarchical self-assembly can be applied to other self-assembling capsid structures across multiple length scales toward future bioinspired functional materials." @default.
- W4229013646 created "2022-05-08" @default.
- W4229013646 creator A5003642180 @default.
- W4229013646 creator A5052644960 @default.
- W4229013646 date "2022-05-04" @default.
- W4229013646 modified "2023-10-17" @default.
- W4229013646 title "Bioinspired Approaches to Self-Assembly of Virus-like Particles: From Molecules to Materials" @default.
- W4229013646 cites W1552724685 @default.
- W4229013646 cites W1964275463 @default.
- W4229013646 cites W1976131871 @default.
- W4229013646 cites W1981380727 @default.
- W4229013646 cites W2000315054 @default.
- W4229013646 cites W2004071147 @default.
- W4229013646 cites W2012512585 @default.
- W4229013646 cites W2023092426 @default.
- W4229013646 cites W2032741311 @default.
- W4229013646 cites W2036905282 @default.
- W4229013646 cites W2057886621 @default.
- W4229013646 cites W2068184659 @default.
- W4229013646 cites W2076873966 @default.
- W4229013646 cites W2079797223 @default.
- W4229013646 cites W2103454439 @default.
- W4229013646 cites W2109735518 @default.
- W4229013646 cites W2142539752 @default.
- W4229013646 cites W2143010345 @default.
- W4229013646 cites W2146129514 @default.
- W4229013646 cites W2154430108 @default.
- W4229013646 cites W2158145379 @default.
- W4229013646 cites W2159244417 @default.
- W4229013646 cites W2160092718 @default.
- W4229013646 cites W2164498356 @default.
- W4229013646 cites W2166326804 @default.
- W4229013646 cites W2172114355 @default.
- W4229013646 cites W2259198909 @default.
- W4229013646 cites W2284750113 @default.
- W4229013646 cites W2303875806 @default.
- W4229013646 cites W2317666919 @default.
- W4229013646 cites W2329029510 @default.
- W4229013646 cites W2329476392 @default.
- W4229013646 cites W2334151637 @default.
- W4229013646 cites W2335364655 @default.
- W4229013646 cites W2342591191 @default.
- W4229013646 cites W2409894392 @default.
- W4229013646 cites W2551840286 @default.
- W4229013646 cites W2605029885 @default.
- W4229013646 cites W2769434378 @default.
- W4229013646 cites W2789413204 @default.
- W4229013646 cites W2790033294 @default.
- W4229013646 cites W2794408097 @default.
- W4229013646 cites W2883109374 @default.
- W4229013646 cites W2885469713 @default.
- W4229013646 cites W2896383614 @default.
- W4229013646 cites W2900588482 @default.
- W4229013646 cites W2910246763 @default.
- W4229013646 cites W2941155491 @default.
- W4229013646 cites W2944263325 @default.
- W4229013646 cites W2981614259 @default.
- W4229013646 cites W2991718697 @default.
- W4229013646 cites W3014221482 @default.
- W4229013646 cites W3017062199 @default.
- W4229013646 cites W3020461036 @default.
- W4229013646 cites W3094188562 @default.
- W4229013646 cites W3107142905 @default.
- W4229013646 cites W3163191820 @default.
- W4229013646 cites W3163469057 @default.
- W4229013646 cites W3196706110 @default.
- W4229013646 cites W3212392255 @default.
- W4229013646 cites W4236449397 @default.
- W4229013646 cites W4280638222 @default.
- W4229013646 doi "https://doi.org/10.1021/acs.accounts.2c00056" @default.
- W4229013646 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35507643" @default.
- W4229013646 hasPublicationYear "2022" @default.
- W4229013646 type Work @default.
- W4229013646 citedByCount "15" @default.
- W4229013646 countsByYear W42290136462022 @default.
- W4229013646 countsByYear W42290136462023 @default.
- W4229013646 crossrefType "journal-article" @default.
- W4229013646 hasAuthorship W4229013646A5003642180 @default.
- W4229013646 hasAuthorship W4229013646A5052644960 @default.
- W4229013646 hasConcept C104317684 @default.
- W4229013646 hasConcept C113709186 @default.
- W4229013646 hasConcept C12554922 @default.
- W4229013646 hasConcept C159047783 @default.
- W4229013646 hasConcept C171250308 @default.
- W4229013646 hasConcept C185592680 @default.
- W4229013646 hasConcept C192562407 @default.
- W4229013646 hasConcept C202878990 @default.
- W4229013646 hasConcept C2522874641 @default.
- W4229013646 hasConcept C26856880 @default.
- W4229013646 hasConcept C2776387124 @default.
- W4229013646 hasConcept C2776441376 @default.
- W4229013646 hasConcept C2910978944 @default.
- W4229013646 hasConcept C40767141 @default.
- W4229013646 hasConcept C53645450 @default.
- W4229013646 hasConcept C547475151 @default.
- W4229013646 hasConcept C55493867 @default.
- W4229013646 hasConcept C62478195 @default.
- W4229013646 hasConcept C8010536 @default.