Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229013668> ?p ?o ?g. }
- W4229013668 endingPage "235" @default.
- W4229013668 startingPage "223" @default.
- W4229013668 abstract "Abstract. Soil fungi play important roles in the functioning of ecosystems, but they are challenging to measure. Using a continental-scale dataset, we developed and evaluated a new method to estimate the relative abundance of the dominant phyla and diversity of fungi in Australian soil. The method relies on the development of spectrotransfer functions with state-of-the-art machine learning and uses publicly available data on soil and environmental proxies for edaphic, climatic, biotic and topographic factors, and visible–near infrared (vis–NIR) wavelengths, to estimate the relative abundances of Ascomycota, Basidiomycota, Glomeromycota, Mortierellomycota and Mucoromycota and community diversity measured with the abundance-based coverage estimator (ACE) index. The algorithms tested were partial least squares regression (PLSR), random forest (RF), Cubist, support vector machines (SVM), Gaussian process regression (GPR), extreme gradient boosting (XGBoost) and one-dimensional convolutional neural networks (1D-CNNs). The spectrotransfer functions were validated with a 10-fold cross-validation (n=577). The 1D-CNNs outperformed the other algorithms and could explain between 45 % and 73 % of fungal relative abundance and diversity. The models were interpretable, and showed that soil nutrients, pH, bulk density, ecosystem water balance (a proxy for aridity) and net primary productivity were important predictors, as were specific vis–NIR wavelengths that correspond to organic functional groups, iron oxide and clay minerals. Estimates of the relative abundance for Mortierellomycota and Mucoromycota produced R2≥0.60, while estimates of the abundance of the Ascomycota and Basidiomycota produced R2 values of 0.5 and 0.58 respectively. The spectrotransfer functions for the Glomeromycota and diversity were the poorest with R2 values of 0.48 and 0.45 respectively. There is no doubt that the method provides estimates that are less accurate than more direct measurements with conventional molecular approaches. However, once the spectrotransfer functions are developed, they can be used with very little cost, and could serve to supplement the more expensive and laborious molecular approaches for a better understanding of soil fungal abundance and diversity under different agronomic and ecological settings." @default.
- W4229013668 created "2022-05-08" @default.
- W4229013668 creator A5059979769 @default.
- W4229013668 creator A5065952924 @default.
- W4229013668 creator A5082263042 @default.
- W4229013668 creator A5091755587 @default.
- W4229013668 date "2022-03-25" @default.
- W4229013668 modified "2023-09-30" @default.
- W4229013668 title "Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions" @default.
- W4229013668 cites W1496317909 @default.
- W4229013668 cites W1592341820 @default.
- W4229013668 cites W1678356000 @default.
- W4229013668 cites W1755432687 @default.
- W4229013668 cites W1831050183 @default.
- W4229013668 cites W1891744174 @default.
- W4229013668 cites W1920295170 @default.
- W4229013668 cites W1934353085 @default.
- W4229013668 cites W1969839347 @default.
- W4229013668 cites W1973273412 @default.
- W4229013668 cites W1987131823 @default.
- W4229013668 cites W1989994082 @default.
- W4229013668 cites W2000013698 @default.
- W4229013668 cites W2018052565 @default.
- W4229013668 cites W2019038438 @default.
- W4229013668 cites W2036102573 @default.
- W4229013668 cites W2038698475 @default.
- W4229013668 cites W2041801729 @default.
- W4229013668 cites W2055057012 @default.
- W4229013668 cites W2056072739 @default.
- W4229013668 cites W2063416458 @default.
- W4229013668 cites W2073503722 @default.
- W4229013668 cites W2097519578 @default.
- W4229013668 cites W2109606373 @default.
- W4229013668 cites W2109771788 @default.
- W4229013668 cites W2113942162 @default.
- W4229013668 cites W2123890146 @default.
- W4229013668 cites W2130089270 @default.
- W4229013668 cites W2156333351 @default.
- W4229013668 cites W2164284346 @default.
- W4229013668 cites W2164568072 @default.
- W4229013668 cites W2164695205 @default.
- W4229013668 cites W2195986191 @default.
- W4229013668 cites W2231697545 @default.
- W4229013668 cites W2235027329 @default.
- W4229013668 cites W2253902135 @default.
- W4229013668 cites W2292439029 @default.
- W4229013668 cites W2345317885 @default.
- W4229013668 cites W2399675776 @default.
- W4229013668 cites W2406165027 @default.
- W4229013668 cites W2782822111 @default.
- W4229013668 cites W2783192416 @default.
- W4229013668 cites W2789457670 @default.
- W4229013668 cites W2806065310 @default.
- W4229013668 cites W2888564053 @default.
- W4229013668 cites W2891747104 @default.
- W4229013668 cites W2900030356 @default.
- W4229013668 cites W2901368461 @default.
- W4229013668 cites W2904788106 @default.
- W4229013668 cites W2911964244 @default.
- W4229013668 cites W2919115771 @default.
- W4229013668 cites W2951230751 @default.
- W4229013668 cites W2954343919 @default.
- W4229013668 cites W2983868970 @default.
- W4229013668 cites W3010310735 @default.
- W4229013668 cites W3109117043 @default.
- W4229013668 cites W3119591894 @default.
- W4229013668 cites W40397213 @default.
- W4229013668 cites W4211049957 @default.
- W4229013668 doi "https://doi.org/10.5194/soil-8-223-2022" @default.
- W4229013668 hasPublicationYear "2022" @default.
- W4229013668 type Work @default.
- W4229013668 citedByCount "4" @default.
- W4229013668 countsByYear W42290136682022 @default.
- W4229013668 countsByYear W42290136682023 @default.
- W4229013668 crossrefType "journal-article" @default.
- W4229013668 hasAuthorship W4229013668A5059979769 @default.
- W4229013668 hasAuthorship W4229013668A5065952924 @default.
- W4229013668 hasAuthorship W4229013668A5082263042 @default.
- W4229013668 hasAuthorship W4229013668A5091755587 @default.
- W4229013668 hasBestOaLocation W42290136681 @default.
- W4229013668 hasConcept C122325731 @default.
- W4229013668 hasConcept C152491559 @default.
- W4229013668 hasConcept C18903297 @default.
- W4229013668 hasConcept C30968088 @default.
- W4229013668 hasConcept C39432304 @default.
- W4229013668 hasConcept C53565203 @default.
- W4229013668 hasConcept C77077793 @default.
- W4229013668 hasConcept C86803240 @default.
- W4229013668 hasConceptScore W4229013668C122325731 @default.
- W4229013668 hasConceptScore W4229013668C152491559 @default.
- W4229013668 hasConceptScore W4229013668C18903297 @default.
- W4229013668 hasConceptScore W4229013668C30968088 @default.
- W4229013668 hasConceptScore W4229013668C39432304 @default.
- W4229013668 hasConceptScore W4229013668C53565203 @default.
- W4229013668 hasConceptScore W4229013668C77077793 @default.
- W4229013668 hasConceptScore W4229013668C86803240 @default.
- W4229013668 hasIssue "1" @default.
- W4229013668 hasLocation W42290136681 @default.