Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229017183> ?p ?o ?g. }
- W4229017183 endingPage "104655" @default.
- W4229017183 startingPage "104655" @default.
- W4229017183 abstract "Due to escalating demand for electric vehicles (EVs) in the worldwide transportation sector, the charging facilities supported by an efficient charging scheme across the power network have a significant impact on the operation of the power system. The unsupervised and decentralized charging of the EVs have several adverse effects on various operational features of the power system. On the other hand, the centralized charging system with proper charging schemes offers less complexity in power system operation to avoid unnecessary power system network stress. This article proposes a valley-filling technique-based EV charging scheme for residential consumers facilitated by a centralized charging system. The charging scheme comprises a genetic algorithm-based optimization for EV acceptance to utilize the available energy of the supply network in the best way. The charging scheme also includes vehicle to grid (V2G) facilitation and the reallocation technique for shifting EVs to resolve any overloading of charging slots. Simulation results of Genetic Algorithm (GA) based optimization show the attainment of near-optimum EV data set with less than 50 iteration numbers and usage of more than 99.5% of available kWh for charging. Other result segments indicate the efficient use of available supply energy by incorporating EVs in the valley time slab of the demand curve. Also, the findings point out that the charging scheme successfully encounters unwanted network stress issues during EV integration by V2G provision and reallocation technique, prioritizing consumer satisfaction at the overloaded charging time slots. The test case simulation results indicate that the ‘average to peak’ demand ratio in the demand curve is increased to 90% from 68% by incorporating the proposed charging scheme for EV charging. Moreover, the outcomes indicate the novelty of the proposed methodology in allocating charging slots considering complex driving parameters like network stress and customer prioritization. • Optimization of the number of electric vehicle acceptance by genetic algorithm • Day-ahead scheduling task by valley-filling technique prioritizing consumer satisfaction • Vehicle to grid provision in support of customer satisfaction • Reallocation technique in resolving overloaded charging slots • Improvement in ‘average to peak’ demand ratio from 68% to 90% in the demand curve of the test case." @default.
- W4229017183 created "2022-05-08" @default.
- W4229017183 creator A5004642269 @default.
- W4229017183 creator A5020427571 @default.
- W4229017183 creator A5038841894 @default.
- W4229017183 creator A5057881813 @default.
- W4229017183 creator A5075414678 @default.
- W4229017183 date "2022-06-01" @default.
- W4229017183 modified "2023-10-06" @default.
- W4229017183 title "A novel consumer-friendly electric vehicle charging scheme with vehicle to grid provision supported by genetic algorithm based optimization" @default.
- W4229017183 cites W1980289102 @default.
- W4229017183 cites W1986621500 @default.
- W4229017183 cites W2065949547 @default.
- W4229017183 cites W2068060907 @default.
- W4229017183 cites W2083928083 @default.
- W4229017183 cites W2088077079 @default.
- W4229017183 cites W2089574748 @default.
- W4229017183 cites W2114461427 @default.
- W4229017183 cites W2133888370 @default.
- W4229017183 cites W2144400508 @default.
- W4229017183 cites W2152514024 @default.
- W4229017183 cites W2159478453 @default.
- W4229017183 cites W2282472744 @default.
- W4229017183 cites W2424411464 @default.
- W4229017183 cites W2523166195 @default.
- W4229017183 cites W2547830109 @default.
- W4229017183 cites W2788861241 @default.
- W4229017183 cites W2794215075 @default.
- W4229017183 cites W3000096586 @default.
- W4229017183 cites W3012001604 @default.
- W4229017183 cites W3030793642 @default.
- W4229017183 cites W3048551033 @default.
- W4229017183 cites W3089251524 @default.
- W4229017183 cites W3095884204 @default.
- W4229017183 cites W3109815579 @default.
- W4229017183 cites W3112643779 @default.
- W4229017183 cites W3137283680 @default.
- W4229017183 cites W3158351609 @default.
- W4229017183 cites W3166900112 @default.
- W4229017183 cites W3186100802 @default.
- W4229017183 cites W3201898353 @default.
- W4229017183 cites W3204243125 @default.
- W4229017183 cites W4205948434 @default.
- W4229017183 cites W4206245498 @default.
- W4229017183 doi "https://doi.org/10.1016/j.est.2022.104655" @default.
- W4229017183 hasPublicationYear "2022" @default.
- W4229017183 type Work @default.
- W4229017183 citedByCount "15" @default.
- W4229017183 countsByYear W42290171832022 @default.
- W4229017183 countsByYear W42290171832023 @default.
- W4229017183 crossrefType "journal-article" @default.
- W4229017183 hasAuthorship W4229017183A5004642269 @default.
- W4229017183 hasAuthorship W4229017183A5020427571 @default.
- W4229017183 hasAuthorship W4229017183A5038841894 @default.
- W4229017183 hasAuthorship W4229017183A5057881813 @default.
- W4229017183 hasAuthorship W4229017183A5075414678 @default.
- W4229017183 hasConcept C119857082 @default.
- W4229017183 hasConcept C121332964 @default.
- W4229017183 hasConcept C126255220 @default.
- W4229017183 hasConcept C127413603 @default.
- W4229017183 hasConcept C134306372 @default.
- W4229017183 hasConcept C163258240 @default.
- W4229017183 hasConcept C171146098 @default.
- W4229017183 hasConcept C187691185 @default.
- W4229017183 hasConcept C2524010 @default.
- W4229017183 hasConcept C2776422217 @default.
- W4229017183 hasConcept C33923547 @default.
- W4229017183 hasConcept C41008148 @default.
- W4229017183 hasConcept C62520636 @default.
- W4229017183 hasConcept C77618280 @default.
- W4229017183 hasConcept C8880873 @default.
- W4229017183 hasConcept C89227174 @default.
- W4229017183 hasConceptScore W4229017183C119857082 @default.
- W4229017183 hasConceptScore W4229017183C121332964 @default.
- W4229017183 hasConceptScore W4229017183C126255220 @default.
- W4229017183 hasConceptScore W4229017183C127413603 @default.
- W4229017183 hasConceptScore W4229017183C134306372 @default.
- W4229017183 hasConceptScore W4229017183C163258240 @default.
- W4229017183 hasConceptScore W4229017183C171146098 @default.
- W4229017183 hasConceptScore W4229017183C187691185 @default.
- W4229017183 hasConceptScore W4229017183C2524010 @default.
- W4229017183 hasConceptScore W4229017183C2776422217 @default.
- W4229017183 hasConceptScore W4229017183C33923547 @default.
- W4229017183 hasConceptScore W4229017183C41008148 @default.
- W4229017183 hasConceptScore W4229017183C62520636 @default.
- W4229017183 hasConceptScore W4229017183C77618280 @default.
- W4229017183 hasConceptScore W4229017183C8880873 @default.
- W4229017183 hasConceptScore W4229017183C89227174 @default.
- W4229017183 hasLocation W42290171831 @default.
- W4229017183 hasOpenAccess W4229017183 @default.
- W4229017183 hasPrimaryLocation W42290171831 @default.
- W4229017183 hasRelatedWork W1858778613 @default.
- W4229017183 hasRelatedWork W1975487401 @default.
- W4229017183 hasRelatedWork W2353358762 @default.
- W4229017183 hasRelatedWork W2354381465 @default.
- W4229017183 hasRelatedWork W2356376220 @default.
- W4229017183 hasRelatedWork W2384813969 @default.
- W4229017183 hasRelatedWork W2392092726 @default.