Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229018581> ?p ?o ?g. }
- W4229018581 endingPage "3707" @default.
- W4229018581 startingPage "3697" @default.
- W4229018581 abstract "Arterial blood pressure (ABP) monitoring may permit the early diagnosis and management of cardiovascular disease (CVD); however, existing methods for measuring ABP outside the clinic use inconvenient cuff sphygmomanometry, or do not estimate continuous ABP waveforms. This study proposes a novel deep learning model DeepCNAP for estimating continuous BP waveform from a noninvasively measured photoplethysmography (PPG) signal in real-time. DeepCNAP was designed through the combination of deep convolutional networks and self-attention. The proposed method was constructed via 10-fold cross-validation based on the MIMIC database (the number of subjects = 942, recording time = 374.43 hours). The performance of DeepCNAP was evaluated from two perspectives: estimating ABP from PPG and classifying hemodynamically unstable events (i.e., hypertension, prehypertension, hypotension, and the normal state). The mean absolute errors of the BP estimates were 3.40 ± 4.36 mmHg for systolic BP, 1.75 ± 2.25 mmHg for diastolic BP, and 3.23 ± 2.21 mmHg for the BP waveform, indicating that DeepCNAP satisfies the standards of both the British Hypertension Society (BHS) and the Association for the Advancement of Medical Instrumentation (AAMI). From the estimated BP, hypertension, prehypertension, hypotension, and the normal state were classified with 99.44, 97.58, 92.23, and 94.64% accuracy, respectively. DeepCNAP enables feasible real-time estimation of invasively measured ABP from noninvasive PPG. With its noninvasive nature, high accuracy, and clinical relevance, the proposed model could be valuable in general wards at hospitals and for wearable devices in daily life." @default.
- W4229018581 created "2022-05-08" @default.
- W4229018581 creator A5009302215 @default.
- W4229018581 creator A5037369509 @default.
- W4229018581 creator A5061378632 @default.
- W4229018581 creator A5080191581 @default.
- W4229018581 date "2022-08-01" @default.
- W4229018581 modified "2023-10-06" @default.
- W4229018581 title "DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure Monitoring Using Photoplethysmography" @default.
- W4229018581 cites W1819620602 @default.
- W4229018581 cites W1991193585 @default.
- W4229018581 cites W2005741801 @default.
- W4229018581 cites W2010346705 @default.
- W4229018581 cites W2046788142 @default.
- W4229018581 cites W2070607910 @default.
- W4229018581 cites W2074712010 @default.
- W4229018581 cites W2088204643 @default.
- W4229018581 cites W2094408051 @default.
- W4229018581 cites W2109232495 @default.
- W4229018581 cites W2139210766 @default.
- W4229018581 cites W2143983154 @default.
- W4229018581 cites W2166451543 @default.
- W4229018581 cites W2194775991 @default.
- W4229018581 cites W2338236284 @default.
- W4229018581 cites W2431637923 @default.
- W4229018581 cites W2490300818 @default.
- W4229018581 cites W2538561053 @default.
- W4229018581 cites W2586184806 @default.
- W4229018581 cites W2626982355 @default.
- W4229018581 cites W2729840605 @default.
- W4229018581 cites W2736824509 @default.
- W4229018581 cites W2774320778 @default.
- W4229018581 cites W2793520628 @default.
- W4229018581 cites W2888894984 @default.
- W4229018581 cites W2894890204 @default.
- W4229018581 cites W2914624514 @default.
- W4229018581 cites W2922473356 @default.
- W4229018581 cites W2947196266 @default.
- W4229018581 cites W2963532813 @default.
- W4229018581 cites W2963697299 @default.
- W4229018581 cites W2963712527 @default.
- W4229018581 cites W2965846681 @default.
- W4229018581 cites W2977582011 @default.
- W4229018581 cites W2994652673 @default.
- W4229018581 cites W2995179497 @default.
- W4229018581 cites W2998221251 @default.
- W4229018581 cites W2998223455 @default.
- W4229018581 cites W2998678989 @default.
- W4229018581 cites W3014522660 @default.
- W4229018581 cites W3016504312 @default.
- W4229018581 cites W3023858750 @default.
- W4229018581 cites W3042050308 @default.
- W4229018581 cites W3105640742 @default.
- W4229018581 cites W3109625451 @default.
- W4229018581 cites W3133766141 @default.
- W4229018581 cites W3135128169 @default.
- W4229018581 cites W3135184486 @default.
- W4229018581 cites W3138603577 @default.
- W4229018581 cites W3152847397 @default.
- W4229018581 cites W3154858758 @default.
- W4229018581 cites W3207149978 @default.
- W4229018581 doi "https://doi.org/10.1109/jbhi.2022.3172514" @default.
- W4229018581 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35511844" @default.
- W4229018581 hasPublicationYear "2022" @default.
- W4229018581 type Work @default.
- W4229018581 citedByCount "6" @default.
- W4229018581 countsByYear W42290185812023 @default.
- W4229018581 crossrefType "journal-article" @default.
- W4229018581 hasAuthorship W4229018581A5009302215 @default.
- W4229018581 hasAuthorship W4229018581A5037369509 @default.
- W4229018581 hasAuthorship W4229018581A5061378632 @default.
- W4229018581 hasAuthorship W4229018581A5080191581 @default.
- W4229018581 hasConcept C106131492 @default.
- W4229018581 hasConcept C116390426 @default.
- W4229018581 hasConcept C118190526 @default.
- W4229018581 hasConcept C126322002 @default.
- W4229018581 hasConcept C141071460 @default.
- W4229018581 hasConcept C154945302 @default.
- W4229018581 hasConcept C164705383 @default.
- W4229018581 hasConcept C2780017030 @default.
- W4229018581 hasConcept C2910533495 @default.
- W4229018581 hasConcept C2984450481 @default.
- W4229018581 hasConcept C31972630 @default.
- W4229018581 hasConcept C41008148 @default.
- W4229018581 hasConcept C57900726 @default.
- W4229018581 hasConcept C71924100 @default.
- W4229018581 hasConcept C84393581 @default.
- W4229018581 hasConceptScore W4229018581C106131492 @default.
- W4229018581 hasConceptScore W4229018581C116390426 @default.
- W4229018581 hasConceptScore W4229018581C118190526 @default.
- W4229018581 hasConceptScore W4229018581C126322002 @default.
- W4229018581 hasConceptScore W4229018581C141071460 @default.
- W4229018581 hasConceptScore W4229018581C154945302 @default.
- W4229018581 hasConceptScore W4229018581C164705383 @default.
- W4229018581 hasConceptScore W4229018581C2780017030 @default.
- W4229018581 hasConceptScore W4229018581C2910533495 @default.
- W4229018581 hasConceptScore W4229018581C2984450481 @default.
- W4229018581 hasConceptScore W4229018581C31972630 @default.