Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229019662> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4229019662 endingPage "178" @default.
- W4229019662 startingPage "167" @default.
- W4229019662 abstract "Let G be a vertex-colored connected graph. A subset X of the vertex-set of G is called proper if any two adjacent vertices in X have distinct colors. The graph G is called proper vertex-disconnected if for any two vertices x and y of G, there exists a vertex subset S of G such that when x and y are nonadjacent, S is proper and x and y belong to different components of G−S; whereas when x and y are adjacent, S+x or S+y is proper and x and y belong to different components of (G−xy)−S. For a connected graph G, the proper vertex-disconnection number of G, denoted by pvd(G), is the minimum number of colors that are needed to make G proper vertex-disconnected. In this paper, we firstly characterize the graphs of order n with proper vertex-disconnection number k for k∈{1,n−2,n−1,n}. Secondly, we give some sufficient conditions for a graph G such that pvd(G)=χ(G), and show that almost all graphs G have pvd(G)=χ(G) and pvd(G‾)=χ(G‾). We also give an equivalent statement of the famous Four Color Theorem. Furthermore, we study the relationship between the proper disconnection number pd(G) of G and the proper vertex-disconnection number pvd(L(G)) of the line graph L(G) of G. Finally, we show that it is NP-complete to decide whether a given vertex-colored graph is proper vertex-disconnected, and it is NP-hard to decide for a fixed integer k≥3, whether the pvd-number of a graph G is no more than k, even if k=3 and G is a planar graph with Δ(G)=12. We also show that it is solvable in polynomial time to determine the proper vertex-disconnection number for a graph with maximum degree less than four." @default.
- W4229019662 created "2022-05-08" @default.
- W4229019662 creator A5030357379 @default.
- W4229019662 creator A5056221361 @default.
- W4229019662 date "2022-06-01" @default.
- W4229019662 modified "2023-10-02" @default.
- W4229019662 title "The proper vertex-disconnection of graphs" @default.
- W4229019662 cites W1971367602 @default.
- W4229019662 cites W1995650785 @default.
- W4229019662 cites W2030087828 @default.
- W4229019662 cites W2083641445 @default.
- W4229019662 cites W2085716675 @default.
- W4229019662 cites W2088617128 @default.
- W4229019662 cites W2401610261 @default.
- W4229019662 cites W2589833411 @default.
- W4229019662 cites W2794563063 @default.
- W4229019662 cites W3083786023 @default.
- W4229019662 cites W3108993913 @default.
- W4229019662 cites W3121709316 @default.
- W4229019662 cites W3134389690 @default.
- W4229019662 cites W3134918153 @default.
- W4229019662 cites W3156876633 @default.
- W4229019662 cites W3158423349 @default.
- W4229019662 cites W4214538463 @default.
- W4229019662 doi "https://doi.org/10.1016/j.tcs.2022.05.004" @default.
- W4229019662 hasPublicationYear "2022" @default.
- W4229019662 type Work @default.
- W4229019662 citedByCount "0" @default.
- W4229019662 crossrefType "journal-article" @default.
- W4229019662 hasAuthorship W4229019662A5030357379 @default.
- W4229019662 hasAuthorship W4229019662A5056221361 @default.
- W4229019662 hasConcept C114614502 @default.
- W4229019662 hasConcept C118615104 @default.
- W4229019662 hasConcept C121134508 @default.
- W4229019662 hasConcept C123482549 @default.
- W4229019662 hasConcept C132525143 @default.
- W4229019662 hasConcept C134306372 @default.
- W4229019662 hasConcept C149530733 @default.
- W4229019662 hasConcept C161677786 @default.
- W4229019662 hasConcept C203776342 @default.
- W4229019662 hasConcept C33923547 @default.
- W4229019662 hasConcept C76444178 @default.
- W4229019662 hasConcept C80899671 @default.
- W4229019662 hasConceptScore W4229019662C114614502 @default.
- W4229019662 hasConceptScore W4229019662C118615104 @default.
- W4229019662 hasConceptScore W4229019662C121134508 @default.
- W4229019662 hasConceptScore W4229019662C123482549 @default.
- W4229019662 hasConceptScore W4229019662C132525143 @default.
- W4229019662 hasConceptScore W4229019662C134306372 @default.
- W4229019662 hasConceptScore W4229019662C149530733 @default.
- W4229019662 hasConceptScore W4229019662C161677786 @default.
- W4229019662 hasConceptScore W4229019662C203776342 @default.
- W4229019662 hasConceptScore W4229019662C33923547 @default.
- W4229019662 hasConceptScore W4229019662C76444178 @default.
- W4229019662 hasConceptScore W4229019662C80899671 @default.
- W4229019662 hasFunder F4320321001 @default.
- W4229019662 hasLocation W42290196621 @default.
- W4229019662 hasOpenAccess W4229019662 @default.
- W4229019662 hasPrimaryLocation W42290196621 @default.
- W4229019662 hasRelatedWork W1964592620 @default.
- W4229019662 hasRelatedWork W1987743836 @default.
- W4229019662 hasRelatedWork W2059680011 @default.
- W4229019662 hasRelatedWork W2368524975 @default.
- W4229019662 hasRelatedWork W2915580243 @default.
- W4229019662 hasRelatedWork W2936483820 @default.
- W4229019662 hasRelatedWork W3092119098 @default.
- W4229019662 hasRelatedWork W32827807 @default.
- W4229019662 hasRelatedWork W4282016561 @default.
- W4229019662 hasRelatedWork W2555480942 @default.
- W4229019662 hasVolume "923" @default.
- W4229019662 isParatext "false" @default.
- W4229019662 isRetracted "false" @default.
- W4229019662 workType "article" @default.