Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229021609> ?p ?o ?g. }
- W4229021609 endingPage "106167" @default.
- W4229021609 startingPage "106167" @default.
- W4229021609 abstract "Mass real estate valuation is a multidimensional and complex matter because it depends on many constant and time-varying factors. It is desirable to have high level of model performance in the development of mass real estate valuation models for the development of sustainable real estate management strategies. For this reason, this study aims to develop a comprehensive methodology that increases the performance of mass real estate valuation models by using optimized datasets and clustering geographical value in Geographic Information Systems (GIS) modeling environment. A case study was carried out in Istanbul and Kocaeli provinces covering neighborhoods with different levels of socio-economic-development. This study was carried out using the big data, which was prepared for 121 criteria incorporating approximately 200.000 real estate values. Firstly, datasets were optimized by using the Boxplot technique concerning dataset-based outliers and Cluster and Outlier Analysis techniques were used regarding the location-based outliers. Next, 22 of the criteria affecting the value was determined with Pearson Correlation technique through analyzing the local relationship between real estate value and the criteria. Based on the result of the Spatially Constrained Multivariate Clustering Analysis (SCMCA) analysis, five different geographical value clusters with similar socio-development characteristics were detected. Mass valuation performances were tested covering all study area and these five clustered areas assessed with the use of Multiple Regression Analysis (MRA) model were used commonly in developing mass real estate valuation models. The model accuracies were evaluated through performance measurement metrics used in machine learning (MAE, MSE, RMSE) and mass real estate valuation (WtR, COD, PRD) technique that was recommended by IAAO. Considering the performances of the models, value prediction models based on geographical value clusters were more successful than the entire of study area model. • The performance of mass real estate valuation models is improved with optimized datasets and clustering analysis. • A data pre-processing approach eliminates dataset and location-based outliers from the big data in the mass valuation model. • Spatially Constrained Multivariate Clustering Analysis defines geographical value clusters to improve valuation accuracy." @default.
- W4229021609 created "2022-05-08" @default.
- W4229021609 creator A5030675071 @default.
- W4229021609 creator A5086042896 @default.
- W4229021609 date "2022-08-01" @default.
- W4229021609 modified "2023-09-27" @default.
- W4229021609 title "Improving performance of mass real estate valuation through application of the dataset optimization and Spatially Constrained Multivariate Clustering Analysis" @default.
- W4229021609 cites W1504778066 @default.
- W4229021609 cites W1973749534 @default.
- W4229021609 cites W1982394209 @default.
- W4229021609 cites W1989758099 @default.
- W4229021609 cites W2005754542 @default.
- W4229021609 cites W2018815836 @default.
- W4229021609 cites W2028399164 @default.
- W4229021609 cites W2056195340 @default.
- W4229021609 cites W2063879341 @default.
- W4229021609 cites W2064506065 @default.
- W4229021609 cites W2067141068 @default.
- W4229021609 cites W2070300253 @default.
- W4229021609 cites W2078877713 @default.
- W4229021609 cites W2080921842 @default.
- W4229021609 cites W2087216833 @default.
- W4229021609 cites W2089220587 @default.
- W4229021609 cites W2097996192 @default.
- W4229021609 cites W2105662747 @default.
- W4229021609 cites W2106291522 @default.
- W4229021609 cites W2118898434 @default.
- W4229021609 cites W2131453089 @default.
- W4229021609 cites W2136347018 @default.
- W4229021609 cites W2159507571 @default.
- W4229021609 cites W2173465678 @default.
- W4229021609 cites W2274824582 @default.
- W4229021609 cites W2556011225 @default.
- W4229021609 cites W2585458859 @default.
- W4229021609 cites W2596553986 @default.
- W4229021609 cites W2759373267 @default.
- W4229021609 cites W2767395467 @default.
- W4229021609 cites W2792713563 @default.
- W4229021609 cites W2801461565 @default.
- W4229021609 cites W2802452997 @default.
- W4229021609 cites W2809969357 @default.
- W4229021609 cites W2883227601 @default.
- W4229021609 cites W2889184061 @default.
- W4229021609 cites W2889229204 @default.
- W4229021609 cites W2908970112 @default.
- W4229021609 cites W2913543033 @default.
- W4229021609 cites W2952307397 @default.
- W4229021609 cites W2996331463 @default.
- W4229021609 cites W2996464143 @default.
- W4229021609 cites W3002176540 @default.
- W4229021609 cites W3004756438 @default.
- W4229021609 cites W3004892913 @default.
- W4229021609 cites W3005072436 @default.
- W4229021609 cites W3007807754 @default.
- W4229021609 cites W3008593201 @default.
- W4229021609 cites W3011094047 @default.
- W4229021609 cites W3019435264 @default.
- W4229021609 cites W3030992380 @default.
- W4229021609 cites W3033586340 @default.
- W4229021609 cites W3041783027 @default.
- W4229021609 cites W3045435521 @default.
- W4229021609 cites W3045887218 @default.
- W4229021609 cites W3085431519 @default.
- W4229021609 cites W3093658042 @default.
- W4229021609 cites W3131325702 @default.
- W4229021609 cites W3137645476 @default.
- W4229021609 cites W3140454303 @default.
- W4229021609 cites W3145332315 @default.
- W4229021609 cites W3152343295 @default.
- W4229021609 cites W3160618544 @default.
- W4229021609 cites W3161026787 @default.
- W4229021609 cites W3214780812 @default.
- W4229021609 cites W3216354545 @default.
- W4229021609 cites W4200494961 @default.
- W4229021609 cites W4214532404 @default.
- W4229021609 cites W4214763453 @default.
- W4229021609 cites W4247163280 @default.
- W4229021609 cites W4247712068 @default.
- W4229021609 cites W4251466598 @default.
- W4229021609 cites W2137690751 @default.
- W4229021609 doi "https://doi.org/10.1016/j.landusepol.2022.106167" @default.
- W4229021609 hasPublicationYear "2022" @default.
- W4229021609 type Work @default.
- W4229021609 citedByCount "6" @default.
- W4229021609 countsByYear W42290216092022 @default.
- W4229021609 countsByYear W42290216092023 @default.
- W4229021609 crossrefType "journal-article" @default.
- W4229021609 hasAuthorship W4229021609A5030675071 @default.
- W4229021609 hasAuthorship W4229021609A5086042896 @default.
- W4229021609 hasConcept C10138342 @default.
- W4229021609 hasConcept C119857082 @default.
- W4229021609 hasConcept C124101348 @default.
- W4229021609 hasConcept C144133560 @default.
- W4229021609 hasConcept C149782125 @default.
- W4229021609 hasConcept C154945302 @default.
- W4229021609 hasConcept C161584116 @default.
- W4229021609 hasConcept C186027771 @default.
- W4229021609 hasConcept C33923547 @default.