Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229023092> ?p ?o ?g. }
- W4229023092 endingPage "107331" @default.
- W4229023092 startingPage "107331" @default.
- W4229023092 abstract "The current paper presents a machine learning method based on artificial neural network (ANN) model for the determination of ductile fracture properties of 16MND5 bainitic forging steel with various three-dimensional (3D) constraint conditions. A series of fracture test data with clamped single edge notched tension (SENT) specimens were used for model training and test. With the comprehensive analysis of prediction accuracy and extrapolation ability, a training strategy for ANN model was proposed including an artificially divided training set and the introduction of dropout layer. The artificial division makes the experimental samples in training set reduced by 40.7%, while the dropout layer prevents ANN model from overfitting caused by reduction of training data. Moreover, the deep nonlinear relationship between geometric dimensions (H/W, B/W, a/W) and ductile fracture properties was well learned by the ANN model. The average error of prediction is less than 11%. Finally, the proposed training strategy was extended to solve the fracture behaviors under varying thermal aging duration with saving training experimental samples by 53.8%. The results showed that the comprehensive interaction of in-plane constraint, out-of-plane constraint and thermal aging on the ductile fracture behaviors are well reproduced. Due to the good prediction performance, generalization and low training cost, the proposed training strategy can make the ANN model much more helpful for the solution of ductile fracture properties of different geometric dimensions in harsh environments." @default.
- W4229023092 created "2022-05-08" @default.
- W4229023092 creator A5008639969 @default.
- W4229023092 creator A5011035865 @default.
- W4229023092 creator A5056893474 @default.
- W4229023092 creator A5063436972 @default.
- W4229023092 date "2022-06-01" @default.
- W4229023092 modified "2023-09-30" @default.
- W4229023092 title "Determination of ductile fracture properties of 16MND5 steels under varying constraint levels using machine learning methods" @default.
- W4229023092 cites W1788730425 @default.
- W4229023092 cites W1908142865 @default.
- W4229023092 cites W1967465261 @default.
- W4229023092 cites W1971788130 @default.
- W4229023092 cites W1981692160 @default.
- W4229023092 cites W1985280876 @default.
- W4229023092 cites W1993020345 @default.
- W4229023092 cites W2033903726 @default.
- W4229023092 cites W2034035609 @default.
- W4229023092 cites W2037052590 @default.
- W4229023092 cites W2060845444 @default.
- W4229023092 cites W2072024713 @default.
- W4229023092 cites W2081384296 @default.
- W4229023092 cites W2084813049 @default.
- W4229023092 cites W2094402138 @default.
- W4229023092 cites W2095141254 @default.
- W4229023092 cites W2732044133 @default.
- W4229023092 cites W2735861906 @default.
- W4229023092 cites W2766876420 @default.
- W4229023092 cites W2790801259 @default.
- W4229023092 cites W2790959928 @default.
- W4229023092 cites W2791796413 @default.
- W4229023092 cites W2888377031 @default.
- W4229023092 cites W2903843825 @default.
- W4229023092 cites W2913541323 @default.
- W4229023092 cites W2944192730 @default.
- W4229023092 cites W2975552897 @default.
- W4229023092 cites W2976883746 @default.
- W4229023092 cites W2981914352 @default.
- W4229023092 cites W2993587506 @default.
- W4229023092 cites W2999480807 @default.
- W4229023092 cites W3003573000 @default.
- W4229023092 cites W3007593704 @default.
- W4229023092 cites W3011714719 @default.
- W4229023092 cites W3012784468 @default.
- W4229023092 cites W3015573581 @default.
- W4229023092 cites W3017154752 @default.
- W4229023092 cites W3027561281 @default.
- W4229023092 cites W3036734221 @default.
- W4229023092 cites W3039711320 @default.
- W4229023092 cites W3082059091 @default.
- W4229023092 cites W3089021334 @default.
- W4229023092 cites W3092067179 @default.
- W4229023092 cites W3092828766 @default.
- W4229023092 cites W3114147330 @default.
- W4229023092 cites W3117130769 @default.
- W4229023092 cites W3128366991 @default.
- W4229023092 cites W3132064345 @default.
- W4229023092 cites W3132874990 @default.
- W4229023092 cites W3133298802 @default.
- W4229023092 cites W3134434404 @default.
- W4229023092 cites W3162950604 @default.
- W4229023092 cites W3165713690 @default.
- W4229023092 cites W3165803053 @default.
- W4229023092 cites W3170283681 @default.
- W4229023092 cites W3174458719 @default.
- W4229023092 cites W3174710087 @default.
- W4229023092 cites W3175413260 @default.
- W4229023092 cites W3175625381 @default.
- W4229023092 cites W3186322658 @default.
- W4229023092 cites W3190306412 @default.
- W4229023092 cites W3198566537 @default.
- W4229023092 cites W3205009387 @default.
- W4229023092 cites W3207995514 @default.
- W4229023092 cites W3211723343 @default.
- W4229023092 cites W3213539424 @default.
- W4229023092 cites W3217564845 @default.
- W4229023092 doi "https://doi.org/10.1016/j.ijmecsci.2022.107331" @default.
- W4229023092 hasPublicationYear "2022" @default.
- W4229023092 type Work @default.
- W4229023092 citedByCount "24" @default.
- W4229023092 countsByYear W42290230922022 @default.
- W4229023092 countsByYear W42290230922023 @default.
- W4229023092 crossrefType "journal-article" @default.
- W4229023092 hasAuthorship W4229023092A5008639969 @default.
- W4229023092 hasAuthorship W4229023092A5011035865 @default.
- W4229023092 hasAuthorship W4229023092A5056893474 @default.
- W4229023092 hasAuthorship W4229023092A5063436972 @default.
- W4229023092 hasConcept C119857082 @default.
- W4229023092 hasConcept C127413603 @default.
- W4229023092 hasConcept C132459708 @default.
- W4229023092 hasConcept C134306372 @default.
- W4229023092 hasConcept C154945302 @default.
- W4229023092 hasConcept C159985019 @default.
- W4229023092 hasConcept C16910744 @default.
- W4229023092 hasConcept C169903167 @default.
- W4229023092 hasConcept C192562407 @default.
- W4229023092 hasConcept C199360897 @default.
- W4229023092 hasConcept C22019652 @default.