Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229026578> ?p ?o ?g. }
- W4229026578 endingPage "11" @default.
- W4229026578 startingPage "1" @default.
- W4229026578 abstract "During rainy times, the impact of outdoor vision systems gets considerably decreased owing to the visibility barrier, distortion, and blurring instigated by raindrops. So, it is essential to eradicate it from the rainy images for ensuring the reliability of outdoor vision system. To achieve this, several rain removal studies have been performed in recent days. In this view, this paper presents a new Faster Region Convolutional Neural Network (Faster RCNN) with Optimal Densely Connected Networks (DenseNet)-based rain removal technique called FRCNN-ODN. The presented involves weighted mean filtering (WMF) is applied as a denoising technique, which helps to boost the quality of the input image. In addition, Faster RCNN technique is used for rain detection that comprises region proposal network (RPN) and Fast RCNN model. The RPN generates high quality region proposals that are exploited by the Faster RCNN to detect rain drops. Also, the DenseNet model is utilized as a baseline network to generate the feature map. Moreover, sparrow search optimization algorithm (SSOA) is applied to choose the hyperparameters of the DenseNet model namely learning rate, batch size, momentum, and weight decay. An extensive experimental validation process is performed to highlight the effectual outcome of the FRCNN-ODN model and investigated the results with respect to several dimensions. The FRCNN-ODN method produced a higher UIQI of 0.981 for the applied image 1. Furthermore, on the applied image 2, the FRCNN-ODN model achieved a maximum UIQI of 0.982. Furthermore, the FRCNN-ODN algorithm produced a higher UIQI of 0.998 on the applied image 3. The simulation outcome showcased the superior outcome of the FRCNN-ODN (Optimal Densely Connected Networks) model with existing methods in terms of distinct measures." @default.
- W4229026578 created "2022-05-08" @default.
- W4229026578 creator A5005946026 @default.
- W4229026578 creator A5010743058 @default.
- W4229026578 creator A5023807867 @default.
- W4229026578 creator A5033150664 @default.
- W4229026578 creator A5063724346 @default.
- W4229026578 creator A5072298936 @default.
- W4229026578 creator A5085927969 @default.
- W4229026578 date "2022-05-04" @default.
- W4229026578 modified "2023-10-14" @default.
- W4229026578 title "A Novel Faster RCNN with ODN-Based Rain Removal Technique" @default.
- W4229026578 cites W2122596619 @default.
- W4229026578 cites W2509784253 @default.
- W4229026578 cites W2596372226 @default.
- W4229026578 cites W2617199345 @default.
- W4229026578 cites W2620950432 @default.
- W4229026578 cites W2740982616 @default.
- W4229026578 cites W2777170053 @default.
- W4229026578 cites W2790883954 @default.
- W4229026578 cites W2806359511 @default.
- W4229026578 cites W2806490974 @default.
- W4229026578 cites W2887181327 @default.
- W4229026578 cites W2888632407 @default.
- W4229026578 cites W2893912929 @default.
- W4229026578 cites W2894938704 @default.
- W4229026578 cites W2963017889 @default.
- W4229026578 cites W2964331331 @default.
- W4229026578 cites W2972451158 @default.
- W4229026578 cites W3011458709 @default.
- W4229026578 cites W3015933079 @default.
- W4229026578 cites W3036842656 @default.
- W4229026578 cites W3126403989 @default.
- W4229026578 cites W3127917437 @default.
- W4229026578 cites W3134034025 @default.
- W4229026578 cites W3167341124 @default.
- W4229026578 cites W3180545632 @default.
- W4229026578 cites W3188016109 @default.
- W4229026578 cites W3192230747 @default.
- W4229026578 cites W3197622673 @default.
- W4229026578 cites W4200014858 @default.
- W4229026578 cites W4200181556 @default.
- W4229026578 cites W4200440366 @default.
- W4229026578 cites W4205651851 @default.
- W4229026578 cites W4206233325 @default.
- W4229026578 cites W4213312320 @default.
- W4229026578 doi "https://doi.org/10.1155/2022/4546135" @default.
- W4229026578 hasPublicationYear "2022" @default.
- W4229026578 type Work @default.
- W4229026578 citedByCount "3" @default.
- W4229026578 countsByYear W42290265782022 @default.
- W4229026578 crossrefType "journal-article" @default.
- W4229026578 hasAuthorship W4229026578A5005946026 @default.
- W4229026578 hasAuthorship W4229026578A5010743058 @default.
- W4229026578 hasAuthorship W4229026578A5023807867 @default.
- W4229026578 hasAuthorship W4229026578A5033150664 @default.
- W4229026578 hasAuthorship W4229026578A5063724346 @default.
- W4229026578 hasAuthorship W4229026578A5072298936 @default.
- W4229026578 hasAuthorship W4229026578A5085927969 @default.
- W4229026578 hasBestOaLocation W42290265781 @default.
- W4229026578 hasConcept C111919701 @default.
- W4229026578 hasConcept C11413529 @default.
- W4229026578 hasConcept C121332964 @default.
- W4229026578 hasConcept C123403432 @default.
- W4229026578 hasConcept C138885662 @default.
- W4229026578 hasConcept C153180895 @default.
- W4229026578 hasConcept C153294291 @default.
- W4229026578 hasConcept C154945302 @default.
- W4229026578 hasConcept C163258240 @default.
- W4229026578 hasConcept C205649164 @default.
- W4229026578 hasConcept C2776401178 @default.
- W4229026578 hasConcept C41008148 @default.
- W4229026578 hasConcept C41895202 @default.
- W4229026578 hasConcept C43214815 @default.
- W4229026578 hasConcept C62520636 @default.
- W4229026578 hasConcept C81363708 @default.
- W4229026578 hasConcept C8642999 @default.
- W4229026578 hasConcept C98045186 @default.
- W4229026578 hasConceptScore W4229026578C111919701 @default.
- W4229026578 hasConceptScore W4229026578C11413529 @default.
- W4229026578 hasConceptScore W4229026578C121332964 @default.
- W4229026578 hasConceptScore W4229026578C123403432 @default.
- W4229026578 hasConceptScore W4229026578C138885662 @default.
- W4229026578 hasConceptScore W4229026578C153180895 @default.
- W4229026578 hasConceptScore W4229026578C153294291 @default.
- W4229026578 hasConceptScore W4229026578C154945302 @default.
- W4229026578 hasConceptScore W4229026578C163258240 @default.
- W4229026578 hasConceptScore W4229026578C205649164 @default.
- W4229026578 hasConceptScore W4229026578C2776401178 @default.
- W4229026578 hasConceptScore W4229026578C41008148 @default.
- W4229026578 hasConceptScore W4229026578C41895202 @default.
- W4229026578 hasConceptScore W4229026578C43214815 @default.
- W4229026578 hasConceptScore W4229026578C62520636 @default.
- W4229026578 hasConceptScore W4229026578C81363708 @default.
- W4229026578 hasConceptScore W4229026578C8642999 @default.
- W4229026578 hasConceptScore W4229026578C98045186 @default.
- W4229026578 hasLocation W42290265781 @default.
- W4229026578 hasOpenAccess W4229026578 @default.