Matches in SemOpenAlex for { <https://semopenalex.org/work/W4229028034> ?p ?o ?g. }
- W4229028034 endingPage "1901" @default.
- W4229028034 startingPage "1887" @default.
- W4229028034 abstract "Abstract The current gold standard for COVID-19 diagnosis, the rRT-PCR test, is hampered by long turnaround times, probable reagent shortages, high false-negative rates and high prices. As a result, machine learning (ML) methods have recently piqued interest, particularly when applied to digital imagery (X-rays and CT scans). In this review, the literature on ML-based diagnostic and prognostic studies grounded on hematochemical parameters has been considered. By doing so, a gap in the current literature was addressed concerning the application of machine learning to laboratory medicine. Sixty-eight articles have been included that were extracted from the Scopus and PubMed indexes. These studies were marked by a great deal of heterogeneity in terms of the examined laboratory test and clinical parameters, sample size, reference populations, ML algorithms, and validation approaches. The majority of research was found to be hampered by reporting and replicability issues: only four of the surveyed studies provided complete information on analytic procedures (units of measure, analyzing equipment), while 29 provided no information at all. Only 16 studies included independent external validation. In light of these findings, we discuss the importance of closer collaboration between data scientists and medical laboratory professionals in order to correctly characterise the relevant population, select the most appropriate statistical and analytical methods, ensure reproducibility, enable the proper interpretation of the results, and gain actual utility by using machine learning methods in clinical practice." @default.
- W4229028034 created "2022-05-08" @default.
- W4229028034 creator A5023835476 @default.
- W4229028034 creator A5023849668 @default.
- W4229028034 creator A5044965940 @default.
- W4229028034 creator A5050549744 @default.
- W4229028034 date "2022-05-05" @default.
- W4229028034 modified "2023-10-17" @default.
- W4229028034 title "How is test laboratory data used and characterised by machine learning models? A systematic review of diagnostic and prognostic models developed for COVID-19 patients using only laboratory data" @default.
- W4229028034 cites W1980283223 @default.
- W4229028034 cites W1993367376 @default.
- W4229028034 cites W2000730414 @default.
- W4229028034 cites W2004967257 @default.
- W4229028034 cites W2074932800 @default.
- W4229028034 cites W2129303461 @default.
- W4229028034 cites W2177870565 @default.
- W4229028034 cites W2429369541 @default.
- W4229028034 cites W2468477102 @default.
- W4229028034 cites W2509053282 @default.
- W4229028034 cites W2736225389 @default.
- W4229028034 cites W2765483530 @default.
- W4229028034 cites W2775695442 @default.
- W4229028034 cites W2781918406 @default.
- W4229028034 cites W2926499033 @default.
- W4229028034 cites W2972337999 @default.
- W4229028034 cites W2976879737 @default.
- W4229028034 cites W3001195213 @default.
- W4229028034 cites W3009365815 @default.
- W4229028034 cites W3009951436 @default.
- W4229028034 cites W3010026184 @default.
- W4229028034 cites W3014524604 @default.
- W4229028034 cites W3022903699 @default.
- W4229028034 cites W3025878268 @default.
- W4229028034 cites W3025948831 @default.
- W4229028034 cites W3034711653 @default.
- W4229028034 cites W3037405958 @default.
- W4229028034 cites W3038018847 @default.
- W4229028034 cites W3040440253 @default.
- W4229028034 cites W3080757257 @default.
- W4229028034 cites W3081491793 @default.
- W4229028034 cites W3087776590 @default.
- W4229028034 cites W3091965475 @default.
- W4229028034 cites W3092456421 @default.
- W4229028034 cites W3094265554 @default.
- W4229028034 cites W3101940495 @default.
- W4229028034 cites W3132718350 @default.
- W4229028034 cites W3165838540 @default.
- W4229028034 cites W3179780875 @default.
- W4229028034 cites W3183421885 @default.
- W4229028034 cites W3191114778 @default.
- W4229028034 cites W3193756180 @default.
- W4229028034 cites W3199003174 @default.
- W4229028034 cites W3211300968 @default.
- W4229028034 cites W4205516484 @default.
- W4229028034 cites W4206205659 @default.
- W4229028034 doi "https://doi.org/10.1515/cclm-2022-0182" @default.
- W4229028034 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35508417" @default.
- W4229028034 hasPublicationYear "2022" @default.
- W4229028034 type Work @default.
- W4229028034 citedByCount "18" @default.
- W4229028034 countsByYear W42290280342022 @default.
- W4229028034 countsByYear W42290280342023 @default.
- W4229028034 crossrefType "journal-article" @default.
- W4229028034 hasAuthorship W4229028034A5023835476 @default.
- W4229028034 hasAuthorship W4229028034A5023849668 @default.
- W4229028034 hasAuthorship W4229028034A5044965940 @default.
- W4229028034 hasAuthorship W4229028034A5050549744 @default.
- W4229028034 hasBestOaLocation W42290280341 @default.
- W4229028034 hasConcept C105795698 @default.
- W4229028034 hasConcept C119857082 @default.
- W4229028034 hasConcept C124101348 @default.
- W4229028034 hasConcept C129848803 @default.
- W4229028034 hasConcept C142724271 @default.
- W4229028034 hasConcept C151730666 @default.
- W4229028034 hasConcept C154945302 @default.
- W4229028034 hasConcept C185592680 @default.
- W4229028034 hasConcept C19527891 @default.
- W4229028034 hasConcept C198531522 @default.
- W4229028034 hasConcept C2777267654 @default.
- W4229028034 hasConcept C2779134260 @default.
- W4229028034 hasConcept C2908647359 @default.
- W4229028034 hasConcept C3008058167 @default.
- W4229028034 hasConcept C33923547 @default.
- W4229028034 hasConcept C40993552 @default.
- W4229028034 hasConcept C41008148 @default.
- W4229028034 hasConcept C43617362 @default.
- W4229028034 hasConcept C44519122 @default.
- W4229028034 hasConcept C524204448 @default.
- W4229028034 hasConcept C71924100 @default.
- W4229028034 hasConcept C86803240 @default.
- W4229028034 hasConcept C99454951 @default.
- W4229028034 hasConceptScore W4229028034C105795698 @default.
- W4229028034 hasConceptScore W4229028034C119857082 @default.
- W4229028034 hasConceptScore W4229028034C124101348 @default.
- W4229028034 hasConceptScore W4229028034C129848803 @default.
- W4229028034 hasConceptScore W4229028034C142724271 @default.
- W4229028034 hasConceptScore W4229028034C151730666 @default.
- W4229028034 hasConceptScore W4229028034C154945302 @default.